PuSH - Publikationsserver des Helmholtz Zentrums München

Shen, J. ; Sun, N. ; Zens, P.* ; Kunzke, T. ; Buck, A. ; Prade, V.M. ; Wang, J. ; Wang, Q. ; Hu, R.* ; Feuchtinger, A. ; Berezowska, S.* ; Walch, A.K.

Spatial metabolomics for evaluating response to neoadjuvant therapy in non-small cell lung cancer patients.

Cancer Comm. 42, 517-535 (2022)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
BACKGROUND: The response to neoadjuvant chemotherapy (NAC) differs substantially among individual patients with non-small cell lung cancer (NSCLC). Major pathological response (MPR) is a histomorphological read-out used to assess treatment response and prognosis in patients NSCLC after NAC. Although spatial metabolomics is a promising tool for evaluating metabolic phenotypes, it has not yet been utilized to assess therapy responses in patients with NSCLC. We evaluated the potential application of spatial metabolomics in cancer tissues to assess the response to NAC, using a metabolic classifier that utilizes mass spectrometry imaging combined with machine learning. METHODS: Resected NSCLC tissue specimens obtained after NAC (n = 88) were subjected to high-resolution mass spectrometry, and these data were used to develop an approach for assessing the response to NAC in patients with NSCLC. The specificities of the generated tumor cell and stroma classifiers were validated by applying this approach to a cohort of biologically matched chemotherapy-naïve patients with NSCLC (n = 85). RESULTS: The developed tumor cell metabolic classifier stratified patients into different prognostic groups with 81.6% accuracy, whereas the stroma metabolic classifier displayed 78.4% accuracy. By contrast, the accuracies of MPR and TNM staging for stratification were 62.5% and 54.1%, respectively. The combination of metabolic and MPR classifiers showed slightly lower accuracy than either individual metabolic classifier. In multivariate analysis, metabolic classifiers were the only independent prognostic factors identified (tumor: P = 0.001, hazards ratio [HR] = 3.823, 95% confidence interval [CI] = 1.716-8.514; stroma: P = 0.049, HR = 2.180, 95% CI = 1.004-4.737), whereas MPR (P = 0.804; HR = 0.913; 95% CI = 0.445-1.874) and TNM staging (P = 0.078; HR = 1.223; 95% CI = 0.977-1.550) were not independent prognostic factors. Using Kaplan-Meier survival analyses, both tumor and stroma metabolic classifiers were able to further stratify patients as NAC responders (P < 0.001) and non-responders (P < 0.001). CONCLUSIONS: Our findings indicate that the metabolic constitutions of both tumor cells and the stroma are valuable additions to the classical histomorphology-based assessment of tumor response.
Impact Factor
Scopus SNIP
Altmetric
15.283
1.962
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Non-small Cell Lung Cancer ; Cancer Metabolism ; Machine Learning ; Mass Spectrometry Imaging ; Metabolic Classifier ; Prognosis ; Spatial Metabolomics ; Treatment Response
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 2523-3548
e-ISSN 2523-3548
Zeitschrift Cancer communications
Quellenangaben Band: 42, Heft: 6, Seiten: 517-535 Artikelnummer: , Supplement: ,
Verlagsort [London]
Begutachtungsstatus Peer reviewed
Institut(e) Research Unit Analytical Pathology (AAP)
CF Pathology & Tissue Analytics (CF-PTA)
POF Topic(s) 30205 - Bioengineering and Digital Health
30202 - Environmental Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-500390-001
A-630600-001
Förderungen Ministry of Education and Research of the Federal Republic of Germany
Deutsche Forschungsgmeinschaft
Stiftung zur Krebsbekampfung
Cancer Research Switzerland
Scopus ID 85130475228
PubMed ID 35593195
Erfassungsdatum 2022-06-10