Ali, S.* ; Zhou, F.* ; Braden, B.* ; Bailey, A.* ; Yang, S.* ; Cheng, G.* ; Zhang, P.* ; Li, X.* ; Kayser, M.* ; Soberanis-Mukul, R.D.* ; Albarqouni, S.* ; Wang, X.* ; Wang, C.* ; Watanabe, S.* ; Öksüz, I.* ; Ning, Q.* ; Khan, M.A.A.* ; Gao, X.W.* ; Realdon, S.* ; Loshchenov, M.* ; Schnabel, J.A.* ; East, J.E.* ; Wagnieres, G.* ; Loschenov, V.B.* ; Grisan, E.* ; Daul, C.* ; Blondel, W.* ; Rittscher, J.*
An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy.
Sci. Rep. 10:2748 (2020)
We present a comprehensive analysis of the submissions to the first edition of the Endoscopy Artefact Detection challenge (EAD). Using crowd-sourcing, this initiative is a step towards understanding the limitations of existing state-of-the-art computer vision methods applied to endoscopy and promoting the development of new approaches suitable for clinical translation. Endoscopy is a routine imaging technique for the detection, diagnosis and treatment of diseases in hollow-organs; the esophagus, stomach, colon, uterus and the bladder. However the nature of these organs prevent imaged tissues to be free of imaging artefacts such as bubbles, pixel saturation, organ specularity and debris, all of which pose substantial challenges for any quantitative analysis. Consequently, the potential for improved clinical outcomes through quantitative assessment of abnormal mucosal surface observed in endoscopy videos is presently not realized accurately. The EAD challenge promotes awareness of and addresses this key bottleneck problem by investigating methods that can accurately classify, localize and segment artefacts in endoscopy frames as critical prerequisite tasks. Using a diverse curated multi-institutional, multi-modality, multi-organ dataset of video frames, the accuracy and performance of 23 algorithms were objectively ranked for artefact detection and segmentation. The ability of methods to generalize to unseen datasets was also evaluated. The best performing methods (top 15%) propose deep learning strategies to reconcile variabilities in artefact appearance with respect to size, modality, occurrence and organ type. However, no single method outperformed across all tasks. Detailed analyses reveal the shortcomings of current training strategies and highlight the need for developing new optimal metrics to accurately quantify the clinical applicability of methods.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
2045-2322
e-ISSN
2045-2322
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 10,
Heft: 1,
Seiten: ,
Artikelnummer: 2748
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
POF Topic(s)
Forschungsfeld(er)
PSP-Element(e)
Förderungen
Copyright
Erfassungsdatum
2022-09-07