PuSH - Publikationsserver des Helmholtz Zentrums München

Irving, B.* ; Franklin, J.M.* ; Papiez, B.W.* ; Anderson, E.M.* ; Sharma, R.A.* ; Gleeson, F.V.* ; Brady, S.M.* ; Schnabel, J.A.*

Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation.

Med. Image Anal. 32, 69-83 (2016)
DOI PMC
Creative Commons Lizenzvertrag
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Rectal tumour segmentation in dynamic contrast-enhanced MRI (DCE-MRI) is a challenging task, and an automated and consistent method would be highly desirable to improve the modelling and prediction of patient outcomes from tissue contrast enhancement characteristics - particularly in routine clinical practice. A framework is developed to automate DCE-MRI tumour segmentation, by introducing: perfusion-supervoxels to over-segment and classify DCE-MRI volumes using the dynamic contrast enhancement characteristics; and the pieces-of-parts graphical model, which adds global (anatomic) constraints that further refine the supervoxel components that comprise the tumour. The framework was evaluated on 23 DCE-MRI scans of patients with rectal adenocarcinomas, and achieved a voxelwise area-under the receiver operating characteristic curve (AUC) of 0.97 compared to expert delineations. Creating a binary tumour segmentation, 21 of the 23 cases were segmented correctly with a median Dice similarity coefficient (DSC) of 0.63, which is close to the inter-rater variability of this challenging task. A second study is also included to demonstrate the method's generalisability and achieved a DSC of 0.71. The framework achieves promising results for the underexplored area of rectal tumour segmentation in DCE-MRI, and the methods have potential to be applied to other DCE-MRI and supervoxel segmentation problems.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
4.565
3.083
20
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Classification ; Dce-mri ; Parts-based Graphical Models ; Rectal Tumour ; Segmentation ; Supervoxel
Sprache englisch
Veröffentlichungsjahr 2016
HGF-Berichtsjahr 2016
ISSN (print) / ISBN 1361-8415
e-ISSN 1361-8415
Quellenangaben Band: 32, Heft: , Seiten: 69-83 Artikelnummer: , Supplement: ,
Verlag Elsevier
Begutachtungsstatus Peer reviewed
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-507100-001
Scopus ID 84963691856
PubMed ID 27054278
Erfassungsdatum 2022-09-06