PuSH - Publikationsserver des Helmholtz Zentrums München

Irving, B.* ; Franklin, J.M.* ; Papiez, B.W.* ; Anderson, E.M.* ; Sharma, R.A.* ; Gleeson, F.V.* ; Brady, S.M.* ; Schnabel, J.A.*

Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation.

Med. Image Anal. 32, 69-83 (2016)
DOI PMC
Creative Commons Lizenzvertrag
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Rectal tumour segmentation in dynamic contrast-enhanced MRI (DCE-MRI) is a challenging task, and an automated and consistent method would be highly desirable to improve the modelling and prediction of patient outcomes from tissue contrast enhancement characteristics - particularly in routine clinical practice. A framework is developed to automate DCE-MRI tumour segmentation, by introducing: perfusion-supervoxels to over-segment and classify DCE-MRI volumes using the dynamic contrast enhancement characteristics; and the pieces-of-parts graphical model, which adds global (anatomic) constraints that further refine the supervoxel components that comprise the tumour. The framework was evaluated on 23 DCE-MRI scans of patients with rectal adenocarcinomas, and achieved a voxelwise area-under the receiver operating characteristic curve (AUC) of 0.97 compared to expert delineations. Creating a binary tumour segmentation, 21 of the 23 cases were segmented correctly with a median Dice similarity coefficient (DSC) of 0.63, which is close to the inter-rater variability of this challenging task. A second study is also included to demonstrate the method's generalisability and achieved a DSC of 0.71. The framework achieves promising results for the underexplored area of rectal tumour segmentation in DCE-MRI, and the methods have potential to be applied to other DCE-MRI and supervoxel segmentation problems.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Classification ; Dce-mri ; Parts-based Graphical Models ; Rectal Tumour ; Segmentation ; Supervoxel
ISSN (print) / ISBN 1361-8415
e-ISSN 1361-8415
Quellenangaben Band: 32, Heft: , Seiten: 69-83 Artikelnummer: , Supplement: ,
Verlag Elsevier
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)