PuSH - Publikationsserver des Helmholtz Zentrums München

Risser, L.* ; Vialard, F.X.* ; Baluwala, H.Y.* ; Schnabel, J.A.*

Piecewise-diffeomorphic image registration: Application to the motion estimation between 3D CT lung images with sliding conditions.

Med. Image Anal. 17, 182-193 (2013)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
In this paper, we propose a new strategy for modelling sliding conditions when registering 3D images in a piecewise-diffeomorphic framework. More specifically, our main contribution is the development of a mathematical formalism to perform Large Deformation Diffeomorphic Metric Mapping registration with sliding conditions. We also show how to adapt this formalism to the LogDemons diffeomorphic registration framework. We finally show how to apply this strategy to estimate the respiratory motion between 3D CT pulmonary images. Quantitative tests are performed on 2D and 3D synthetic images, as well as on real 3D lung images from the MICCAI EMPIRE10 challenge. Results show that our strategy estimates accurate mappings of entire 3D thoracic image volumes that exhibit a sliding motion, as opposed to conventional registration methods which are not capable of capturing discontinuous deformations at the thoracic cage boundary. They also show that although the deformations are not smooth across the location of sliding conditions, they are almost always invertible in the whole image domain. This would be helpful for radiotherapy planning and delivery.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
0.000
2.931
65
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Diffeomorphic Registration ; Lddmm ; Logdemons ; Respiratory Motion ; Sliding Motion
Sprache englisch
Veröffentlichungsjahr 2013
HGF-Berichtsjahr 2013
ISSN (print) / ISBN 1361-8415
e-ISSN 1361-8415
Quellenangaben Band: 17, Heft: 2, Seiten: 182-193 Artikelnummer: , Supplement: ,
Verlag Elsevier
Begutachtungsstatus Peer reviewed
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-507100-001
Scopus ID 84883871559
Scopus ID 23177000
Erfassungsdatum 2022-09-06