Schnabel, J.A.* ; Arridge, S.R.*
    
 
    
        
Multiscale shape description of MR brain images using active contour models.
    
    
        
    
    
        
        Proc. SPIE 2710, 596-606 (1996)
    
    
    
		
		
			
				In this paper we present a hierarchical multiscale shape description tool based on active contour models which enables data-driven quantitative and qualitative shape studies of MR brain images at multiple scales. At large scales, global shape properties are extracted from the image, while smaller scale features are suppressed. At lower scales, the detailed shape characteristics become more prominent. Extracting a shape at different levels of scale yields a hierarchical multiscale shape stack. This shape stack can be used to localize and characterize shape changes like deformations and abnormalities at different levels of scale. The shape description is performed as a set of implicit segmentation steps at multiple scales yielding descriptions of an object at various levels of detail. Implicit segmentation is carried out using the well-known model of active contours. Starting from an initial active contour, several implicit optimization processes with differently regularized energy functions are performed, where the energy functions are represented as functions of scale. The presented algorithm for shape focusing and description based on active contour models shows promising results on extracting and characterizing complex shapes in MR brain images at a large set of scales.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Active Contour Models ; Contour Extraction ; Curvature ; Differential Invariants ; Hierarchical Description ; Multiscale Representation ; Shape Analysis ; Snakes
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        1996
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        1996
    
 
    
    
        ISSN (print) / ISBN
        0277-786X
    
 
    
        e-ISSN
        1996-756X
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 2710,  
	    Heft: ,  
	    Seiten: 596-606 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            SPIE
        
 
        
            Verlagsort
            
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute for Machine Learning in Biomed Imaging (IML)
    
 
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-507100-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
        Erfassungsdatum
        2022-09-05