PuSH - Publikationsserver des Helmholtz Zentrums München

Cahill, N.D.* ; Schnabel, J.A.* ; Noble, J.A.* ; Hawkes, D.J.*

Overlap invariance of cumulative residual entropy measures for multimodal image alignment.

Proc. SPIE 7259, DOI: 10.1117/12.811585 (2009)
Verlagsversion DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Cumulative residual entropy (CRE)1,2 has recently been advocated as an alternative to differential entropy for describing the complexity of an image. CRE has been used to construct an alternate form of mutual information (MI),3,4 called symmetric cumulative mutual information (SCMI) 5 or cross-CRE (CCRE).6 This alternate form of MI has exhibited superior performance to traditional MI in a variety of ways.6 However, like traditional MI, SCMI suffers from sensitivity to the changing size of the overlap between images over the course of registration. Alternative similarity measures based on differential entropy, such as normalized mutual information (NMI),7 entropy correlation coefficient (ECC)8,9 and modified mutual information (M-MI),10 have been shown to exhibit superior performance to MI with respect to the overlap sensitivity problem. In this paper, we show how CRE can be used to compute versions of NMI, ECC, and M-MI that we call the normalized cumulative mutual information (NCMI), cumulative residual entropy correlation coefficient (CRECC), and modified symmetric cumulative mutual information (M-SCMI). We use publicly available CT, PET, and MR brain images* with known ground truth transformations to evaluate the performance of these CRE-based similarity measures for rigid multimodal registration. Results show that the proposed similarity measures provide a statistically significant improvement in target registration error (TRE) over SCMI. © 2009 Copyright SPIE - The International Society for Optical Engineering.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
0.000
0.249
8
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Registration
Sprache englisch
Veröffentlichungsjahr 2009
HGF-Berichtsjahr 2009
ISSN (print) / ISBN 0277-786X
e-ISSN 1996-756X
Zeitschrift Proceedings of SPIE
Quellenangaben Band: 7259 Heft: , Seiten: , Artikelnummer: , Supplement: ,
Verlag SPIE
Begutachtungsstatus Peer reviewed
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-507100-001
Scopus ID 71749106973
Erfassungsdatum 2022-09-05