Chandler, A.G.* ; Netsch, T.* ; Cocosco, C.A.* ; Schnabel, J.A.* ; Hawkes, D.J.*
    
 
    
        
Slice-to-volume registration using mutual information between probabilistic image classifications.
    
    
        
    
    
        
        In:. SPIE, 2004. 1120-1129 (Proc. SPIE ; 5370 II)
    
    
    
		
		
			
				Intensity based registration algorithms have proved to be accurate and robust for 3D-3D registration tasks. However, these methods utilise the information content within an image, and therefore their performance is hindered for image data that is sparse. This is the case for the registration of a single image slice to a 3D image volume. There are some important applications that could benefit from improved slice-to-volume registration, for example, the planning of magnetic resonance (MR) scans or cardiac MR imaging, where images are acquired as stacks of single slices. We have developed and validated an information based slice-to-volume registration algorithm that uses vector valued probabilistic images of tissue classification that have been derived from the original intensity images. We believe that using such methods inherently incorporates into the registration framework more information about the images, especially in images containing severe partial volume artifacts. Initial experimental results indicate that the suggested method can achieve a more robust registration compared to standard intensity based methods for the rigid registration of a single thick brain MR slice, containing severe partial volume artifacts in the through-plane direction, to a complete 3D MR brain volume.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Konferenzbeitrag
    
 
    
        Dokumenttyp
        
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        C-means ; Fuzzy Classification ; Normalised Mutual Information ; Slice-to-volume Registration
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2004
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2004
    
 
    
    
        ISSN (print) / ISBN
        0277-786X
    
 
    
        e-ISSN
        1996-756X
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 5370 II,  
	    Heft: ,  
	    Seiten: 1120-1129 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            SPIE
        
 
        
            Verlagsort
            
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute for Machine Learning in Biomed Imaging (IML)
    
 
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-507100-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
        Erfassungsdatum
        2022-05-25