Decision tree analyses to explore the relevance of multiple sex/gender
dimensions for the exposure to green spaces: Results from the KORA INGER
study.
Int. J. Environ. Res. Public Health 19:7476 (2022)
Recently, attention has been drawn to the need to integrate sex/gender more comprehensively into environmental health research. Considering theoretical approaches, we define sex/gender as a multidimensional concept based on intersectionality. However, operationalizing sex/gender through multiple covariates requires the usage of statistical methods that are suitable for handling such complex data. We therefore applied two different decision tree approaches: classification and regression trees (CART) and conditional inference trees (CIT). We explored the relevance of multiple sex/gender covariates for the exposure to green spaces, measured both subjectively and objectively. Data from 3742 participants from the Cooperative Health Research in the Region of Augsburg (KORA) study were analyzed within the INGER (Integrating gender into environmental health research) project. We observed that the participants' financial situation and discrimination experience was relevant for their access to high quality public green spaces, while the urban/rural context was most relevant for the general greenness in the residential environment. None of the covariates operationalizing the individual sex/gender self-concept were relevant for differences in exposure to green spaces. Results were largely consistent for both CART and CIT. Most importantly we showed that decision tree analyses are useful for exploring the relevance of multiple sex/gender dimensions and their interactions for environmental exposures. Further investigations in larger urban areas with less access to public green spaces and with a study population more heterogeneous with respect to age and social disparities may add more information about the relevance of multiple sex/gender dimensions for the exposure to green spaces.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Gender ; Greenness ; Intersectionality ; Normalized Difference Vegetation Index (ndvi) ; Recursive Partitioning ; Sex ; Subgroup Analysis
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
1661-7827
e-ISSN
1660-4601
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 19,
Heft: 12,
Seiten: ,
Artikelnummer: 7476
Supplement: ,
Reihe
Verlag
MDPI
Verlagsort
Basel, Switzerland
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-504000-001
G-504090-001
G-505300-001
Förderungen
Bundesministerium für Bildung und Forschung
Helmholtz Zentrum Munchen
Copyright
Erfassungsdatum
2022-07-18