Ziller, A.* ; Usynin, D.* ; Braren, R.* ; Makowski, M.* ; Rueckert, D.* ; Kaissis, G.*
Medical imaging deep learning with differential privacy.
Sci. Rep. 11:13524 (2021)
The successful training of deep learning models for diagnostic deployment in medical imaging applications requires large volumes of data. Such data cannot be procured without consideration for patient privacy, mandated both by legal regulations and ethical requirements of the medical profession. Differential privacy (DP) enables the provision of information-theoretic privacy guarantees to patients and can be implemented in the setting of deep neural network training through the differentially private stochastic gradient descent (DP-SGD) algorithm. We here present deepee, a free-and-open-source framework for differentially private deep learning for use with the PyTorch deep learning framework. Our framework is based on parallelised execution of neural network operations to obtain and modify the per-sample gradients. The process is efficiently abstracted via a data structure maintaining shared memory references to neural network weights to maintain memory efficiency. We furthermore offer specialised data loading procedures and privacy budget accounting based on the Gaussian Differential Privacy framework, as well as automated modification of the user-supplied neural network architectures to ensure DP-conformity of its layers. We benchmark our framework's computational performance against other open-source DP frameworks and evaluate its application on the paediatric pneumonia dataset, an image classification task and on the Medical Segmentation Decathlon Liver dataset in the task of medical image segmentation. We find that neural network training with rigorous privacy guarantees is possible while maintaining acceptable classification performance and excellent segmentation performance. Our framework compares favourably to related work with respect to memory consumption and computational performance. Our work presents an open-source software framework for differentially private deep learning, which we demonstrate in medical imaging analysis tasks. It serves to further the utilisation of privacy-enhancing techniques in medicine and beyond in order to assist researchers and practitioners in addressing the numerous outstanding challenges towards their widespread implementation.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
2045-2322
e-ISSN
2045-2322
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 11,
Heft: 1,
Seiten: ,
Artikelnummer: 13524
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530014-001
Förderungen
Copyright
Erfassungsdatum
2022-09-13