Dou, Q.* ; So, T.Y.* ; Jiang, M.* ; Liu, Q.* ; Vardhanabhuti, V.* ; Kaissis, G.* ; Li, Z.* ; Si, W.* ; Lee, H.H.C.* ; Yu, K.* ; Feng, Z.* ; Dong, L.* ; Burian, E.* ; Jungmann, F.* ; Braren, R.* ; Makowski, M.* ; Kainz, B.* ; Rueckert, D.* ; Glocker, B.* ; Yu, S.C.H.* ; Heng, P.A.*
Federated deep learning for detecting COVID-19 lung abnormalities in CT: A privacy-preserving multinational validation study.
NPJ Digit. Med. 4:60 (2021)
Data privacy mechanisms are essential for rapidly scaling medical training databases to capture the heterogeneity of patient data distributions toward robust and generalizable machine learning systems. In the current COVID-19 pandemic, a major focus of artificial intelligence (AI) is interpreting chest CT, which can be readily used in the assessment and management of the disease. This paper demonstrates the feasibility of a federated learning method for detecting COVID-19 related CT abnormalities with external validation on patients from a multinational study. We recruited 132 patients from seven multinational different centers, with three internal hospitals from Hong Kong for training and testing, and four external, independent datasets from Mainland China and Germany, for validating model generalizability. We also conducted case studies on longitudinal scans for automated estimation of lesion burden for hospitalized COVID-19 patients. We explore the federated learning algorithms to develop a privacy-preserving AI model for COVID-19 medical image diagnosis with good generalization capability on unseen multinational datasets. Federated learning could provide an effective mechanism during pandemics to rapidly develop clinically useful AI across institutions and countries overcoming the burden of central aggregation of large amounts of sensitive data.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
2398-6352
e-ISSN
2398-6352
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 4,
Heft: 1,
Seiten: ,
Artikelnummer: 60
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530014-001
Förderungen
Copyright
Erfassungsdatum
2022-09-13