Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Improving SWATH-MS analysis by deep-learning.
Proteomics 23:e2200179 (2023)
Data-independent acquisition (DIA) of tandem mass spectrometry spectra has emerged as a promising technology to improve coverage and quantification of proteins in complex mixtures. The success of DIA experiments is dependent on the quality of spectral libraries used for data base searching. Frequently, these libraries need to be generated by labor and time intensive data dependent acquisition (DDA) experiments. Recently, several algorithms have been published that allow the generation of theoretical libraries by an efficient prediction of retention time and intensity of the fragment ions. Sequential windowed acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) is a DIA method that can be applied at an unprecedented speed, but the fragmentation spectra suffer from a lower quality than data acquired on Orbitrap instruments. To reliably generate theoretical libraries that can be used in SWATH experiments, we developed deep-learning for SWATH analysis (dpSWATH), to improve the sensitivity and specificity of data generated by Q-TOF mass spectrometers. The theoretical library built by dpSWATH allowed us to increase the identification rate of proteins compared to traditional or library-free methods. Based on our analysis we conclude that dpSWATH is a superior prediction framework for SWATH-MS measurements than other algorithms based on Orbitrap data.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Altmetric
3.400
0.000
1
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Data Independent Acquisition ; Deep Learning ; Proteomics ; Spectral Library; Acquisition; Prediction; Peptides; Spectra
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
2022
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
1615-9853
e-ISSN
1615-9861
Zeitschrift
Proteomics
Quellenangaben
Band: 23,
Heft: 9,
Artikelnummer: e2200179
Verlag
Wiley
Verlagsort
111 River St, Hoboken 07030-5774, Nj Usa
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Stem Cell Research (ISF)
POF Topic(s)
30204 - Cell Programming and Repair
Forschungsfeld(er)
Stem Cell and Neuroscience
PSP-Element(e)
G-500800-001
Förderungen
China Scholarship Council
Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
WOS ID
000906811600001
WOS ID
WOS:000906811600001
Scopus ID
85145490280
PubMed ID
36571325
Erfassungsdatum
2023-01-17