PuSH - Publikationsserver des Helmholtz Zentrums München

Sun, B.* ; Smialowski, P. ; Aftab, W.* ; Schmidt, A.* ; Forne, I.* ; Straub, T.* ; Imhof, A.*

Improving SWATH-MS analysis by deep-learning.

Proteomics 23:e2200179 (2023)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Data-independent acquisition (DIA) of tandem mass spectrometry spectra has emerged as a promising technology to improve coverage and quantification of proteins in complex mixtures. The success of DIA experiments is dependent on the quality of spectral libraries used for data base searching. Frequently, these libraries need to be generated by labor and time intensive data dependent acquisition (DDA) experiments. Recently, several algorithms have been published that allow the generation of theoretical libraries by an efficient prediction of retention time and intensity of the fragment ions. Sequential windowed acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) is a DIA method that can be applied at an unprecedented speed, but the fragmentation spectra suffer from a lower quality than data acquired on Orbitrap instruments. To reliably generate theoretical libraries that can be used in SWATH experiments, we developed deep-learning for SWATH analysis (dpSWATH), to improve the sensitivity and specificity of data generated by Q-TOF mass spectrometers. The theoretical library built by dpSWATH allowed us to increase the identification rate of proteins compared to traditional or library-free methods. Based on our analysis we conclude that dpSWATH is a superior prediction framework for SWATH-MS measurements than other algorithms based on Orbitrap data.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Altmetric
3.400
0.000
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Data Independent Acquisition ; Deep Learning ; Proteomics ; Spectral Library; Acquisition; Prediction; Peptides; Spectra
Sprache englisch
Veröffentlichungsjahr 2023
Prepublished im Jahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 1615-9853
e-ISSN 1615-9861
Zeitschrift Proteomics
Quellenangaben Band: 23, Heft: 9, Seiten: , Artikelnummer: e2200179 Supplement: ,
Verlag Wiley
Verlagsort 111 River St, Hoboken 07030-5774, Nj Usa
Begutachtungsstatus Peer reviewed
POF Topic(s) 30204 - Cell Programming and Repair
Forschungsfeld(er) Stem Cell and Neuroscience
PSP-Element(e) G-500800-001
Förderungen China Scholarship Council
Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
Scopus ID 85145490280
PubMed ID 36571325
Erfassungsdatum 2023-01-17