Spohn, S.K.B.* ; Schmidt-Hegemann, N.S.* ; Ruf, J.* ; Mix, M.* ; Benndorf, M.* ; Bamberg, F.* ; Makowski, M.R.* ; Kirste, S.* ; Ruhle, A.* ; Nouvel, J.* ; Sprave, T.* ; Vogel, M.M.E.* ; Galitsnaya, P.* ; Gschwend, J.E.* ; Gratzke, C.* ; Stief, C.* ; Löck, S.* ; Zwanenburg, A.* ; Trapp, C.* ; Bernhardt, D.* ; Nekolla, S.G.* ; Li, M.* ; Belka, C.* ; Combs, S.E. ; Eiber, M.* ; Unterrainer, L.* ; Unterrainer, M.* ; Bartenstein, P.* ; Grosu, A.L.* ; Zamboglou, C.* ; Peeken, J.C.
Development of PSMA-PET-guided CT-based radiomic signature to predict biochemical recurrence after salvage radiotherapy.
Eur. J. Nucl. Med. Mol. Imaging 50, 2537-2547 (2023)
PURPOSE: To develop a CT-based radiomic signature to predict biochemical recurrence (BCR) in prostate cancer patients after sRT guided by positron-emission tomography targeting prostate-specific membrane antigen (PSMA-PET). MATERIAL AND METHODS: Consecutive patients, who underwent 68Ga-PSMA11-PET/CT-guided sRT from three high-volume centers in Germany, were included in this retrospective multicenter study. Patients had PET-positive local recurrences and were treated with intensity-modulated sRT. Radiomic features were extracted from volumes of interests on CT guided by focal PSMA-PET uptakes. After preprocessing, clinical, radiomics, and combined clinical-radiomic models were developed combining different feature reduction techniques and Cox proportional hazard models within a nested cross validation approach. RESULTS: Among 99 patients, median interval until BCR was the radiomic models outperformed clinical models and combined clinical-radiomic models for prediction of BCR with a C-index of 0.71 compared to 0.53 and 0.63 in the test sets, respectively. In contrast to the other models, the radiomic model achieved significantly improved patient stratification in Kaplan-Meier analysis. The radiomic and clinical-radiomic model achieved a significantly better time-dependent net reclassification improvement index (0.392 and 0.762, respectively) compared to the clinical model. Decision curve analysis demonstrated a clinical net benefit for both models. Mean intensity was the most predictive radiomic feature. CONCLUSION: This is the first study to develop a PSMA-PET-guided CT-based radiomic model to predict BCR after sRT. The radiomic models outperformed clinical models and might contribute to guide personalized treatment decisions.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Outcome Prediction ; Psma-pet/ct ; Personalization ; Prostate Cancer ; Radiomics ; Salvage Radiotherapy; Prostate-cancer; Validation
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1619-7070
e-ISSN
1432-105X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 50,
Heft: 8,
Seiten: 2537-2547
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Springer
Verlagsort
One New York Plaza, Suite 4600, New York, Ny, United States
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Radiation Sciences
PSP-Element(e)
G-501300-001
Förderungen
Projekt DEAL
Copyright
Erfassungsdatum
2023-10-06