PuSH - Publikationsserver des Helmholtz Zentrums München

Spohn, S.K.B.* ; Schmidt-Hegemann, N.S.* ; Ruf, J.* ; Mix, M.* ; Benndorf, M.* ; Bamberg, F.* ; Makowski, M.R.* ; Kirste, S.* ; Ruhle, A.* ; Nouvel, J.* ; Sprave, T.* ; Vogel, M.M.E.* ; Galitsnaya, P.* ; Gschwend, J.E.* ; Gratzke, C.* ; Stief, C.* ; Löck, S.* ; Zwanenburg, A.* ; Trapp, C.* ; Bernhardt, D.* ; Nekolla, S.G.* ; Li, M.* ; Belka, C.* ; Combs, S.E. ; Eiber, M.* ; Unterrainer, L.* ; Unterrainer, M.* ; Bartenstein, P.* ; Grosu, A.L.* ; Zamboglou, C.* ; Peeken, J.C.

Development of PSMA-PET-guided CT-based radiomic signature to predict biochemical recurrence after salvage radiotherapy.

Eur. J. Nucl. Med. Mol. Imaging 50, 2537-2547 (2023)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
PURPOSE: To develop a CT-based radiomic signature to predict biochemical recurrence (BCR) in prostate cancer patients after sRT guided by positron-emission tomography targeting prostate-specific membrane antigen (PSMA-PET). MATERIAL AND METHODS: Consecutive patients, who underwent 68Ga-PSMA11-PET/CT-guided sRT from three high-volume centers in Germany, were included in this retrospective multicenter study. Patients had PET-positive local recurrences and were treated with intensity-modulated sRT. Radiomic features were extracted from volumes of interests on CT guided by focal PSMA-PET uptakes. After preprocessing, clinical, radiomics, and combined clinical-radiomic models were developed combining different feature reduction techniques and Cox proportional hazard models within a nested cross validation approach. RESULTS: Among 99 patients, median interval until BCR was the radiomic models outperformed clinical models and combined clinical-radiomic models for prediction of BCR with a C-index of 0.71 compared to 0.53 and 0.63 in the test sets, respectively. In contrast to the other models, the radiomic model achieved significantly improved patient stratification in Kaplan-Meier analysis. The radiomic and clinical-radiomic model achieved a significantly better time-dependent net reclassification improvement index (0.392 and 0.762, respectively) compared to the clinical model. Decision curve analysis demonstrated a clinical net benefit for both models. Mean intensity was the most predictive radiomic feature. CONCLUSION: This is the first study to develop a PSMA-PET-guided CT-based radiomic model to predict BCR after sRT. The radiomic models outperformed clinical models and might contribute to guide personalized treatment decisions.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
9.100
0.000
1
2
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Outcome Prediction ; Psma-pet/ct ; Personalization ; Prostate Cancer ; Radiomics ; Salvage Radiotherapy; Prostate-cancer; Validation
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 1619-7070
e-ISSN 1432-105X
Quellenangaben Band: 50, Heft: 8, Seiten: 2537-2547 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort One New York Plaza, Suite 4600, New York, Ny, United States
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Radiation Sciences
PSP-Element(e) G-501300-001
Förderungen Projekt DEAL
Scopus ID 85150341900
PubMed ID 36929180
Erfassungsdatum 2023-10-06