Meijs, C. ; Brugts, J.J.* ; Lund, L.H.* ; Linssen, G.C.M.* ; Rocca, H.B.* ; Dahlström, U.* ; Vaartjes, I.* ; Koudstaal, S.* ; Asselbergs, F.W.* ; Savarese, G.* ; Uijl, A.*
Identifying distinct clinical clusters in heart failure with mildly reduced ejection fraction.
Int. J. Cardiol. 386, 83-90 (2023)
INTRODUCTION: Heart failure (HF) is a heterogeneous syndrome, and the specific sub-category HF with mildly reduced ejection fraction (EF) range (HFmrEF; 41-49% EF) is only recently recognised as a distinct entity. Cluster analysis can characterise heterogeneous patient populations and could serve as a stratification tool in clinical trials and for prognostication. The aim of this study was to identify clusters in HFmrEF and compare cluster prognosis. METHODS AND RESULTS: Latent class analysis to cluster HFmrEF patients based on their characteristics was performed in the Swedish HF registry (n = 7316). Identified clusters were validated in a Dutch cross-sectional HF registry-based dataset CHECK-HF (n = 1536). In Sweden, mortality and hospitalisation across the clusters were compared using a Cox proportional hazard model, with a Fine-Gray sub-distribution for competing risks and adjustment for age and sex. Six clusters were discovered with the following prevalence and hazard ratio with 95% confidence intervals (HR [95%CI]) vs. cluster 1: 1) low-comorbidity (17%, reference), 2) ischaemic-male (13%, HR 0.9 [95% CI 0.7-1.1]), 3) atrial fibrillation (20%, HR 1.5 [95% CI 1.2-1.9]), 4) device/wide QRS (9%, HR 2.7 [95% CI 2.2-3.4]), 5) metabolic (19%, HR 3.1 [95% CI 2.5-3.7]) and 6) cardio-renal phenotype (22%, HR 2.8 [95% CI 2.2-3.6]). The cluster model was robust between both datasets. CONCLUSION: We found robust clusters with potential clinical meaning and differences in mortality and hospitalisation. Our clustering model could be valuable as a clinical differentiation support and prognostic tool in clinical trial design.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Clustering ; Heart Failure With Mildly Reduced Ejection Fraction ; Heterogeneity ; Latent Class Analysis; Atrial-fibrillation; Midrange; Association; Dysfunction; Outcomes; Common
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
0167-5273
e-ISSN
1874-1754
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 386,
Heft: ,
Seiten: 83-90
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Elsevier House, Brookvale Plaza, East Park Shannon, Co, Clare, 00000, Ireland
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-554700-001
Förderungen
Dutch Heart Foundation
UCL Hospitals NIHR Biomedical Research Centre
Stockholm County Council
Swedish Heart Lung Foundation
Swedish Research Council
EU/EFPIA Innovative Medicines Initiative 2 Joint Undertaking BigData@Heart
Servier, the Netherlands
Swedish Heart-Lung Foundation
Swedish Society of Cardiology
Swedish Association of Local Authorities and Regions
Swedish National Board of Health and Welfare
Copyright
Erfassungsdatum
2023-10-06