PuSH - Publikationsserver des Helmholtz Zentrums München

Meijs, C. ; Brugts, J.J.* ; Lund, L.H.* ; Linssen, G.C.M.* ; Rocca, H.B.* ; Dahlström, U.* ; Vaartjes, I.* ; Koudstaal, S.* ; Asselbergs, F.W.* ; Savarese, G.* ; Uijl, A.*

Identifying distinct clinical clusters in heart failure with mildly reduced ejection fraction.

Int. J. Cardiol. 386, 83-90 (2023)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
INTRODUCTION: Heart failure (HF) is a heterogeneous syndrome, and the specific sub-category HF with mildly reduced ejection fraction (EF) range (HFmrEF; 41-49% EF) is only recently recognised as a distinct entity. Cluster analysis can characterise heterogeneous patient populations and could serve as a stratification tool in clinical trials and for prognostication. The aim of this study was to identify clusters in HFmrEF and compare cluster prognosis. METHODS AND RESULTS: Latent class analysis to cluster HFmrEF patients based on their characteristics was performed in the Swedish HF registry (n = 7316). Identified clusters were validated in a Dutch cross-sectional HF registry-based dataset CHECK-HF (n = 1536). In Sweden, mortality and hospitalisation across the clusters were compared using a Cox proportional hazard model, with a Fine-Gray sub-distribution for competing risks and adjustment for age and sex. Six clusters were discovered with the following prevalence and hazard ratio with 95% confidence intervals (HR [95%CI]) vs. cluster 1: 1) low-comorbidity (17%, reference), 2) ischaemic-male (13%, HR 0.9 [95% CI 0.7-1.1]), 3) atrial fibrillation (20%, HR 1.5 [95% CI 1.2-1.9]), 4) device/wide QRS (9%, HR 2.7 [95% CI 2.2-3.4]), 5) metabolic (19%, HR 3.1 [95% CI 2.5-3.7]) and 6) cardio-renal phenotype (22%, HR 2.8 [95% CI 2.2-3.6]). The cluster model was robust between both datasets. CONCLUSION: We found robust clusters with potential clinical meaning and differences in mortality and hospitalisation. Our clustering model could be valuable as a clinical differentiation support and prognostic tool in clinical trial design.
Impact Factor
Scopus SNIP
Altmetric
3.500
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Clustering ; Heart Failure With Mildly Reduced Ejection Fraction ; Heterogeneity ; Latent Class Analysis; Atrial-fibrillation; Midrange; Association; Dysfunction; Outcomes; Common
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 0167-5273
e-ISSN 1874-1754
Quellenangaben Band: 386, Heft: , Seiten: 83-90 Artikelnummer: , Supplement: ,
Verlag Elsevier
Verlagsort Elsevier House, Brookvale Plaza, East Park Shannon, Co, Clare, 00000, Ireland
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-554700-001
Förderungen Dutch Heart Foundation
UCL Hospitals NIHR Biomedical Research Centre
Stockholm County Council
Swedish Heart Lung Foundation
Swedish Research Council
EU/EFPIA Innovative Medicines Initiative 2 Joint Undertaking BigData@Heart
Servier, the Netherlands
Swedish Heart-Lung Foundation
Swedish Society of Cardiology
Swedish Association of Local Authorities and Regions
Swedish National Board of Health and Welfare
Scopus ID 85160049804
PubMed ID 37201609
Erfassungsdatum 2023-10-06