PuSH - Publikationsserver des Helmholtz Zentrums München

Matek, C. ; Marr, C. ; von Bergwelt-Baildon, M.* ; Spiekermann, K.*

Künstliche Intelligenz für die computerunterstützte Leukämiediagnostik.

Artificial Intelligence for computer-aided leukemia diagnostics.

Dtsch. Med. Wochenschr. 148, 1108-1112 (2023)
Verlagsversion DOI PMC
The manual examination of blood and bone marrow specimens for leukemia patients is time-consuming and limited by intra- and inter-observer variance. The development of AI algorithms for leukemia diagnostics requires high-quality sample digitization and reliable annotation of large datasets. Deep learning-based algorithms using these datasets attain human-level performance for some well-defined, clinically relevant questions such as the blast character of cells. Methods such as multiple - instance - learning allow predicting diagnoses from a collection of leukocytes, but are more data-intensive. Using "explainable AI" methods can make the prediction process more transparent and allow users to verify the algorithm's predictions. Stability and robustness analyses are necessary for routine application of these algorithms, and regulatory institutions are developing standards for this purpose. Integrated diagnostics, which link different diagnostic modalities, offer the promise of even greater accuracy but require more extensive and diverse datasets.
Impact Factor
Scopus SNIP
Altmetric
0.600
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Ai In Medical Image Analysis ; Computer-aided Diagnostics ; Cytomorphology ; Leukemia Diagnostics
Sprache deutsch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 0012-0472
e-ISSN 1439-4413
Quellenangaben Band: 148, Heft: 17, Seiten: 1108-1112 Artikelnummer: , Supplement: ,
Verlag Thieme
Verlagsort Rudigerstr 14, D-70469 Stuttgart, Germany
Begutachtungsstatus Peer reviewed
Institut(e) Institute of AI for Health (AIH)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540007-001
Scopus ID 85168571686
PubMed ID 37611575
Erfassungsdatum 2023-10-06