möglich sobald bei der ZB eingereicht worden ist.
Künstliche Intelligenz für die computerunterstützte Leukämiediagnostik.
Artificial Intelligence for computer-aided leukemia diagnostics.
Dtsch. Med. Wochenschr. 148, 1108-1112 (2023)
The manual examination of blood and bone marrow specimens for leukemia patients is time-consuming and limited by intra- and inter-observer variance. The development of AI algorithms for leukemia diagnostics requires high-quality sample digitization and reliable annotation of large datasets. Deep learning-based algorithms using these datasets attain human-level performance for some well-defined, clinically relevant questions such as the blast character of cells. Methods such as multiple - instance - learning allow predicting diagnoses from a collection of leukocytes, but are more data-intensive. Using "explainable AI" methods can make the prediction process more transparent and allow users to verify the algorithm's predictions. Stability and robustness analyses are necessary for routine application of these algorithms, and regulatory institutions are developing standards for this purpose. Integrated diagnostics, which link different diagnostic modalities, offer the promise of even greater accuracy but require more extensive and diverse datasets.
Impact Factor
Scopus SNIP
Altmetric
0.600
0.000
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Ai In Medical Image Analysis ; Computer-aided Diagnostics ; Cytomorphology ; Leukemia Diagnostics
Sprache
deutsch
Veröffentlichungsjahr
2023
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
0012-0472
e-ISSN
1439-4413
Zeitschrift
Deutsche Medizinische Wochenschrift - DMW
Quellenangaben
Band: 148,
Heft: 17,
Seiten: 1108-1112
Verlag
Thieme
Verlagsort
Rudigerstr 14, D-70469 Stuttgart, Germany
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of AI for Health (AIH)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540007-001
WOS ID
001054012300012
Scopus ID
85168571686
PubMed ID
37611575
Erfassungsdatum
2023-10-06