A deep neural network for real-time optoacoustic image reconstruction with adjustable speed of sound.
Nat. Mach. Intell. 5, 1130–1141 (2023)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Multispectral optoacoustic tomography is a high-resolution functional imaging modality that can non-invasively access a broad range of pathophysiological phenomena. Real-time imaging would enable translation of multispectral optoacoustic tomography into clinical imaging, visualize dynamic pathophysiological changes associated with disease progression and enable in situ diagnoses. Model-based reconstruction affords state-of-the-art optoacoustic images but cannot be used for real-time imaging. On the other hand, deep learning enables fast reconstruction of optoacoustic images, but the lack of experimental ground-truth training data leads to reduced image quality for in vivo scans. In this work we achieve accurate optoacoustic image reconstruction in 31 ms per image for arbitrary (experimental) input data by expressing model-based reconstruction with a deep neural network. The proposed deep learning framework, DeepMB, generalizes to experimental test data through training on optoacoustic signals synthesized from real-world images and ground truth optoacoustic images generated by model-based reconstruction. Based on qualitative and quantitative evaluation on a diverse dataset of in vivo images, we show that DeepMB reconstructs images approximately 1,000-times faster than the iterative model-based reference method while affording near-identical image qualities. Accurate and real-time image reconstructions with DeepMB can enable full access to the high-resolution and multispectral contrast of handheld optoacoustic tomography, thus adoption into clinical routines.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Response Characterization Method; Inverse Problems; Tomography; Algorithm
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
2522-5839
e-ISSN
2522-5839
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 5,
Heft: ,
Seiten: 1130–1141
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Springer
Verlagsort
[London]
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505500-001
G-503800-001
Förderungen
European Research Council (ERC) under the European Union
Bavarian Ministry of Economic Affairs, Energy and Technology (StMWi)
Copyright
Erfassungsdatum
2023-12-04