Improved daily estimates of relative humidity at high resolution across Germany: A random forest approach.
Environ. Res. 238:117173 (2023)
The lack of readily available methods for estimating high-resolution near-surface relative humidity (RH) and the incapability of weather stations to fully capture the spatiotemporal variability can lead to exposure misclassification in studies of environmental epidemiology. We therefore aimed to predict German-wide 1 × 1 km daily mean RH during 2000–2021. RH observations, longitude and latitude, modelled air temperature, precipitation and wind speed as well as remote sensing information on topographic elevation, vegetation, and the true color band composite were incorporated in a Random Forest (RF) model, in addition to date for capturing the temporal variations of the response-explanatory variables relationship. The model achieved high accuracy (R2 = 0.83) and low errors (Root Mean Square Error (RMSE) of 5.07%, Mean Absolute Percentage Error (MAPE) of 5.19% and Mean Percentage Error (MPE) of - 0.53%), calculated via ten-fold cross-validation. A comparison of our RH predictions with measurements from a dense monitoring network in the city of Augsburg, South Germany confirmed the good performance (R2 ≥ 0.86, RMSE ≤ 5.45%, MAPE ≤ 5.59%, MPE ≤ 3.11%). The model displayed high German-wide RH (22y-average of 79.00%) and high spatial variability across the country, exceeding 12% on yearly averages. Our findings indicate that the proposed RF model is suitable for estimating RH for a whole country in high-resolution and provide a reliable RH dataset for epidemiological analyses and other environmental research purposes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Environmental Epidemiology ; Exposure Assessment ; External Validation ; Machine Learning ; Relative Humidity ; Spatiotemporal Modeling; Surface Air-temperature; Mortality; Pressure; Models
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
0013-9351
e-ISSN
1096-0953
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 238,
Heft: Pt 2,
Seiten: ,
Artikelnummer: 117173
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
San Diego, Calif.
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Epidemiology (EPI)
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-504000-001
G-504000-010
Förderungen
Helmholtz Association's Initiative and Networking Fund
Helmholtz Information & Data Science Academy (HIDA) - HIDA Trainee Network program
Helmholtz Climate Initiative (HI-CAM) project - Helmholtz Association's Initiative and Networking Fund
Copyright
Erfassungsdatum
2023-10-18