PuSH - Publikationsserver des Helmholtz Zentrums München

Cramer, E.* ; Witthaut, D.* ; Mitsos, A.* ; Dahmen, M.*

Multivariate probabilistic forecasting of intraday electricity prices using normalizing flows.

Appl. Energy 346 (2023)
Verlagsversion DOI
Electricity is traded on various markets with different time horizons and regulations. Short-term intraday trading becomes increasingly important due to the higher penetration of renewables. In Germany, the intraday electricity price typically fluctuates around the day-ahead price of the European Power EXchange (EPEX) spot markets in a distinct hourly pattern. This work proposes a probabilistic modeling approach that models the intraday price difference to the day-ahead contracts. The model captures the emerging hourly pattern by considering the four 15 min intervals in each day-ahead price interval as a four-dimensional joint probability distribution. The resulting nontrivial, multivariate price difference distribution is learned using a normalizing flow, i.e., a deep generative model that combines conditional multivariate density estimation and probabilistic regression. Furthermore, this work discusses the influence of different external impact factors based on literature insights and impact analysis using explainable artificial intelligence (XAI). The normalizing flow is compared to an informed selection of historical data and probabilistic forecasts using a Gaussian copula and a Gaussian regression model. Among the different models, the normalizing flow identifies the trends with the highest accuracy and has the narrowest prediction intervals. Both the XAI analysis and the empirical experiments highlight that the immediate history of the price difference realization and the increments of the day-ahead price have the most substantial impact on the price difference.
Impact Factor
Scopus SNIP
Altmetric
11.200
2.758
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Schlagwörter Deep Learning ; Electricity Price Forecasting ; Multivariate Modeling ; Probabilistic Forecasting
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 0306-2619
Zeitschrift Applied Energy
Quellenangaben Band: 346 Heft: , Seiten: , Artikelnummer: , Supplement: ,
Verlag Elsevier
Verlagsort Amsterdam [u.a.]
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz AI - FZJ (HAI - FZJ)
Scopus ID 85161722493
Erfassungsdatum 2023-10-18