PuSH - Publikationsserver des Helmholtz Zentrums München

Laine, N.* ; Liebgott, H.* ; Zahnd, G. ; Orkisz, M.*

Carotid Artery Wall Segmentation in Ultrasound Image Sequences Using a Deep Convolutional Neural Network.

In: (International Conference on Computer Vision and Graphics, ICCVG 2022). 2023. 73-84 (Lecture Notes in Networks and Systems ; 598)
DOI
Intima-media thickness (IMT) of the common carotid artery is routinely measured in ultrasound images and its increase is a marker of pathology. Manual measurement being subject to substantial inter- and intra-observer variability, automated methods have been proposed to find the contours of the intima-media complex (IMC) and to deduce the IMT thereof. Most of them assume that these contours are smooth curves passing through points with strong intensity gradients expected between artery lumen and intima, and between media and adventitia layers. These assumptions may not hold depending on image quality and arterial wall morphology. We therefore relaxed them and developed a region-based segmentation method that learns the appearance of the IMC from data annotated by human experts. This deep-learning method uses the dilated U-net architecture and proceeds as follows. First, the shape and location of the arterial wall are identified in full-image-height patches using the original image resolution. Then, the actual segmentation of the IMC is performed at a finer spatial resolution, in patches distributed around the location thus identified. Eventually, the predictions from these patches are combined by majority voting and the contours of the segmented region are extracted. On a public database of 2676 images the accuracy and robustness of the proposed method outperformed state-of-the-art algorithms. The first step was successful in 98.7 % of images, and the overall mean absolute error of the estimated IMT was of 100±89μ m.
Altmetric
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Schlagwörter Deep Learning ; Segmentation ; Ultrasound Images
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 2367-3370
e-ISSN 2367-3389
Konferenztitel International Conference on Computer Vision and Graphics, ICCVG 2022
Quellenangaben Band: 598, Heft: , Seiten: 73-84 Artikelnummer: , Supplement: ,
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-505500-001
Scopus ID 85151130802
Erfassungsdatum 2023-10-18