Jiao, Y.* ; van der Laak, J.* ; Albarqouni, S. ; Li, Z.* ; Tan, T.* ; Bhalerao, A.* ; Cheng, S.* ; Ma, J.* ; Pocock, J.M.* ; Pluim, J.P.W.* ; Koohbanani, N.A.* ; Bashir, R.M.S.* ; Raza, S.E.A.* ; Liu, S.* ; Graham, S.E.* ; Wetstein, S.* ; Khurram, S.A.* ; Liu, X.* ; Rajpoot, N.* ; Veta, M.* ; Ciompi, F.*
LYSTO: The lymphocyte assessment hackathon and benchmark dataset.
IEEE J. Biomed. Health Inform. 28, 1161-1172 (2023)
We introduce LYSTO, the Lymphocyte Assessment Hackathon, which was held in conjunction with the MICCAI 2019 Conference in Shenzhen (China). The competition required participants to automatically assess the number of lymphocytes, in particular T-cells, in images of colon, breast, and prostate cancer stained with CD3 and CD8 immunohistochemistry. Differently from other challenges setup in medical image analysis, LYSTO participants were solely given a few hours to address this problem. In this paper, we describe the goal and the multi-phase organization of the hackathon; we describe the proposed methods and the on-site results. Additionally, we present post-competition results where we show how the presented methods perform on an independent set of lung cancer slides, which was not part of the initial competition, as well as a comparison on lymphocyte assessment between presented methods and a panel of pathologists. We show that some of the participants were capable to achieve pathologist-level performance at lymphocyte assessment. After the hackathon, LYSTO was left as a lightweight plug-and-play benchmark dataset on grand-challenge website, together with an automatic evaluation platform. LYSTO has supported a number of research in lymphocyte assessment in oncology. LYSTO will be a long-lasting educational challenge for deep learning and digital pathology, it is available at https://lysto.grand-challenge.org/.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Artificial Intelligence ; Computational Pathology ; Computer-aided Diagnosis ; Lymphocyte Assessment; Immune Contexture; Breast-cancer; Quantification; Segmentation; Images
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
2168-2194
e-ISSN
2168-2208
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 28,
Heft: 3,
Seiten: 1161-1172
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
IEEE
Verlagsort
445 Hoes Lane, Piscataway, Nj 08855-4141 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530005-001
Förderungen
European Union#x0027
s Horizon 2020 Research and Innovation Programme
Copyright
Erfassungsdatum
2023-12-15