PuSH - Publikationsserver des Helmholtz Zentrums München

Klein, L.* ; Ziegler, S.* ; Laufer, F.* ; Debus, C.* ; Götz, M.* ; Maier-Hein, K.* ; Paetzold, U.W.* ; Isensee, F.* ; Jäger, P.F.*

Discovering Process Dynamics for Scalable Perovskite Solar Cell Manufacturing with Explainable AI.

Adv. Mater., 13 (2023)
Verlagsversion DOI
Open Access Hybrid
Large-area processing of perovskite semiconductor thin-films is complex and evokes unexplained variance in quality, posing a major hurdle for the commercialization of perovskite photovoltaics. Advances in scalable fabrication processes are currently limited to gradual and arbitrary trial-and-error procedures. While the in situ acquisition of photoluminescence (PL) videos has the potential to reveal important variations in the thin-film formation process, the high dimensionality of the data quickly surpasses the limits of human analysis. In response, this study leverages deep learning (DL) and explainable artificial intelligence (XAI) to discover relationships between sensor information acquired during the perovskite thin-film formation process and the resulting solar cell performance indicators, while rendering these relationships humanly understandable. The study further shows how gained insights can be distilled into actionable recommendations for perovskite thin-film processing, advancing toward industrial-scale solar cell manufacturing. This study demonstrates that XAI methods will play a critical role in accelerating energy materials science.
Impact Factor
Scopus SNIP
Altmetric
29.400
4.100
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Deep Learning ; Energy Materials Science ; Explainable Artificial Intelligence (xai) ; Knowledge Discovery ; Perovskite Solar Cells; Counterfactual Explanations
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 0935-9648
e-ISSN 1521-4095
Zeitschrift Advanced materials
Quellenangaben Band: , Heft: , Seiten: 13 Artikelnummer: , Supplement: ,
Verlag Wiley
Verlagsort Weinheim
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz AI - KIT (HAI - KIT)
Förderungen German Federal Ministry of Education and Research (Solar Tap innovation platform)
Karlsruhe School of Optics und Photonics
Helmholtz Association
Helmholtz Imaging (HI), a platform of the Helmholtz Incubator on Information and Data Science
Scopus ID 85178895367
Erfassungsdatum 2023-12-18