Klein, L.* ; Ziegler, S.* ; Laufer, F.* ; Debus, C.* ; Götz, M.* ; Maier-Hein, K.* ; Paetzold, U.W.* ; Isensee, F.* ; Jäger, P.F.*
Discovering Process Dynamics for Scalable Perovskite Solar Cell Manufacturing with Explainable AI.
Adv. Mater., 13 (2023)
Large-area processing of perovskite semiconductor thin-films is complex and evokes unexplained variance in quality, posing a major hurdle for the commercialization of perovskite photovoltaics. Advances in scalable fabrication processes are currently limited to gradual and arbitrary trial-and-error procedures. While the in situ acquisition of photoluminescence (PL) videos has the potential to reveal important variations in the thin-film formation process, the high dimensionality of the data quickly surpasses the limits of human analysis. In response, this study leverages deep learning (DL) and explainable artificial intelligence (XAI) to discover relationships between sensor information acquired during the perovskite thin-film formation process and the resulting solar cell performance indicators, while rendering these relationships humanly understandable. The study further shows how gained insights can be distilled into actionable recommendations for perovskite thin-film processing, advancing toward industrial-scale solar cell manufacturing. This study demonstrates that XAI methods will play a critical role in accelerating energy materials science.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Deep Learning ; Energy Materials Science ; Explainable Artificial Intelligence (xai) ; Knowledge Discovery ; Perovskite Solar Cells; Counterfactual Explanations
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
0935-9648
e-ISSN
1521-4095
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: ,
Heft: ,
Seiten: 13
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Wiley
Verlagsort
Weinheim
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Helmholtz AI - KIT (HAI - KIT)
POF Topic(s)
Forschungsfeld(er)
PSP-Element(e)
Förderungen
German Federal Ministry of Education and Research (Solar Tap innovation platform)
Karlsruhe School of Optics und Photonics
Helmholtz Association
Helmholtz Imaging (HI), a platform of the Helmholtz Incubator on Information and Data Science
Copyright
Erfassungsdatum
2023-12-18