Alkhodari, M.* ; Khandoker, A.H.* ; Jelinek, H.F.* ; Karlas, A. ; Soulaidopoulos, S.* ; Arsenos, P.* ; Doundoulakis, I.* ; Gatzoulis, K.A.* ; Tsioufis, K.* ; Hadjileontiadis, L.J.*
Circadian assessment of heart failure using explainable deep learning and novel multi-parameter polar images.
Comput. Meth. Programs Biomed. 248:108107 (2024)
BACKGROUND AND OBJECTIVE: Heart failure (HF) is a multi-faceted and life-threatening syndrome that affects more than 64.3 million people worldwide. Current gold-standard screening technique, echocardiography, neglects cardiovascular information regulated by the circadian rhythm and does not incorporate knowledge from patient profiles. In this study, we propose a novel multi-parameter approach to assess heart failure using heart rate variability (HRV) and patient clinical information. METHODS: In this approach, features from 24-hour HRV and clinical information were combined as a single polar image and fed to a 2D deep learning model to infer the HF condition. The edges of the polar image correspond to the timely variation of different features, each of which carries information on the function of the heart, and internal illustrates color-coded patient clinical information. RESULTS: Under a leave-one-subject-out cross-validation scheme and using 7,575 polar images from a multi-center cohort (American and Greek) of 303 coronary artery disease patients (median age: 58 years [50-65], median body mass index (BMI): 27.28 kg/m2 [24.91-29.41]), the model yielded mean values for the area under the receiver operating characteristics curve (AUC), sensitivity, specificity, normalized Matthews correlation coefficient (NMCC), and accuracy of 0.883, 90.68%, 95.19%, 0.93, and 92.62%, respectively. Moreover, interpretation of the model showed proper attention to key hourly intervals and clinical information for each HF stage. CONCLUSIONS: The proposed approach could be a powerful early HF screening tool and a supplemental circadian enhancement to echocardiography which sets the basis for next-generation personalized healthcare.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Preserved Ejection Fraction; Rate-variability; Association; Mortality; Outcomes; Angina; Death
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
0169-2607
e-ISSN
1872-7565
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 248,
Heft: ,
Seiten: ,
Artikelnummer: 108107
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Elsevier House, Brookvale Plaza, East Park Shannon, Co, Clare, 00000, Ireland
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505593-001
Förderungen
Healthcare Engineering Innovation Center (HEIC) at Khalifa University, Abu Dhabi, UAE
Copyright
Erfassungsdatum
2024-05-07