Poonoosamy, J.* ; Kaspor, A.* ; Schreinemachers, C.* ; Bosbach, D.* ; Cheong, O.* ; Kowalski, P.M.* ; Obaied, A.*
A radiochemical lab-on-a-chip paired with computer vision to unlock the crystallization kinetics of (Ba,Ra)SO4.
Sci. Rep. 14, 12 (2024)
(Ra,Ba)SO4 solid solutions are commonly encountered as problematic scales in subsurface energy-related applications, e.g., geothermal systems, hydraulic fracturing, conventional oil and gas, etc. Despite its relevance, its crystallization kinetics were never determined because of radium (226), high radioactivity (3.7 × 1010 Bq g−1), and utilization in contemporary research, therefore constrained to trace amounts (< 10−8 M) with the composition of BaxRa1-xSO4 commonly restricted to x > 0.99. What if lab-on-a-chip technology could create new opportunities, enabling the study of highly radioactive radium beyond traces to access new information? In this work, we developed a lab-on-a-chip experiment paired with computer vision to evaluate the crystal growth rate of (Ba,Ra)SO4 solid solutions. The computer vision algorithm enhances experimental throughput, yielding robust statistical insights and further advancing the efficiency of such experiments. The 3D analysis results of the precipitated crystals using confocal Raman spectroscopy suggested that {210} faces grew twice as fast as {001} faces, mirroring a common observation reported for pure barite. The crystal growth rate of (Ba0.5Ra0.5)SO4 follows a second-order reaction with a kinetic constant equal to (1.23 ± 0.09) × 10−10 mol m−2 s−1.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Computer Vision ; Crystal Growth ; Microfluidics ; Ra-bearing Barite ; Solid Solutions; Solid-solution; Crystal-structure; Growth-kinetics; Porous-medium; Radium; Barite; Recrystallization; Coprecipitation; Thermodynamics; Precipitation
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
2045-2322
e-ISSN
2045-2322
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 14,
Heft: 1,
Seiten: 12
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Helmholtz AI - FZJ (HAI - FZJ)
POF Topic(s)
Forschungsfeld(er)
PSP-Element(e)
Förderungen
Helmholtz AI projects
European Research Council through the project GENIES (ERC)
European Research Council
Copyright
Erfassungsdatum
2024-05-08