Buchner, J.A.* ; Kofler, F. ; Mayinger, M.* ; Christ, S.M.* ; Brunner, T.B.* ; Wittig, A.* ; Menze, B.* ; Zimmer, C.* ; Meyer, B.* ; Guckenberger, M.* ; Andratschke, N.* ; El Shafie, R.A.* ; Debus, J.* ; Rogers, S.* ; Riesterer, O.* ; Schulze, K.* ; Feldmann, H.J.* ; Blanck, O.* ; Zamboglou, C.* ; Ferentinos, K.* ; Bilger-Zähringer, A.* ; Grosu, A.L.* ; Wolff, R.* ; Piraud, M. ; Eitz, K.A. ; Combs, S.E. ; Bernhardt, D.* ; Rueckert, D.* ; Wiestler, B.* ; Peeken, J.C.
Radiomics-based prediction of local control in patients with brain metastases following postoperative stereotactic radiotherapy.
Neuro. Oncol. 26, 1638-1650 (2024)
BACKGROUND: Surgical resection is the standard of care for patients with large or symptomatic brain metastases (BMs). Despite improved local control after adjuvant stereotactic radiotherapy, the risk of local failure (LF) persists. Therefore, we aimed to develop and externally validate a pre-therapeutic radiomics-based prediction tool to identify patients at high LF risk. METHODS: Data were collected from A Multicenter Analysis of Stereotactic Radiotherapy to the Resection Cavity of Brain Metastases (AURORA) retrospective study (training cohort: 253 patients from two centers; external test cohort: 99 patients from five centers). Radiomic features were extracted from the contrast-enhancing BM (T1-CE MRI sequence) and the surrounding edema (FLAIR sequence). Different combinations of radiomic and clinical features were compared. The final models were trained on the entire training cohort with the best parameter set previously determined by internal 5-fold cross-validation and tested on the external test set. RESULTS: The best performance in the external test was achieved by an elastic net regression model trained with a combination of radiomic and clinical features with a concordance index (CI) of 0.77, outperforming any clinical model (best CI: 0.70). The model effectively stratified patients by LF risk in a Kaplan-Meier analysis (p < 0.001) and demonstrated an incremental net clinical benefit. At 24 months, we found LF in 9% and 74% of the low and high-risk groups, respectively. CONCLUSIONS: A combination of clinical and radiomic features predicted freedom from LF better than any clinical feature set alone. Patients at high risk for LF may benefit from stricter follow-up routines or intensified therapy.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Artificial Intelligence ; Brain Metastases ; Local Failure Prediction ; Machine Learning ; Radiomics; Radiosurgery; Diagnosis; Impact
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
1522-8517
e-ISSN
1523-5866
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 26,
Heft: 9,
Seiten: 1638-1650
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Oxford University Press
Verlagsort
Journals Dept, 2001 Evans Rd, Cary, Nc 27513 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30203 - Molecular Targets and Therapies
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Radiation Sciences
Enabling and Novel Technologies
PSP-Element(e)
G-501300-001
G-530001-001
Förderungen
Deutsche Forschungsgemeinschaft
Copyright
Erfassungsdatum
2024-06-17