Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Pre- to post-contrast breast MRI synthesis for enhanced tumour segmentation.
In: (Conference on Medical Imaging - Image Processing, 19-22 Februar 2024, San Diego, California). 1000 20th St, Po Box 10, Bellingham, Wa 98227-0010 Usa: SPIE, 2024.:129260Y (Proc. SPIE ; 12926)
Despite its benefits for tumour detection and treatment, the administration of contrast agents in dynamic contrast-enhanced MRI (DCE-MRI) is associated with a range of issues, including their invasiveness, bioaccumulation, and a risk of nephrogenic systemic fibrosis. This study explores the feasibility of producing synthetic contrast enhancements by translating pre-contrast T1-weighted fat-saturated breast MRI to their corresponding first DCE-MRI sequence leveraging the capabilities of a generative adversarial network (GAN). Additionally, we introduce a Scaled Aggregate Measure (SAMe) designed for quantitatively evaluating the quality of synthetic data in a principled manner and serving as a basis for selecting the optimal generative model. We assess the generated DCE-MRI data using quantitative image quality metrics and apply them to the downstream task of 3D breast tumour segmentation. Our results highlight the potential of post-contrast DCE-MRI synthesis in enhancing the robustness of breast tumour segmentation models via data augmentation. Our code is available at https://github.com/RichardObi/pre_post_synthesis.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Breast Cancer ; Contrast Agent ; Deep Learning ; Gans ; Generative Models ; Synthetic Data; Image; Cancer
ISSN (print) / ISBN
0277-786X
e-ISSN
1996-756X
Konferenztitel
Conference on Medical Imaging - Image Processing
Konferzenzdatum
19-22 Februar 2024
Konferenzort
San Diego, California
Zeitschrift
Proceedings of SPIE
Quellenangaben
Band: 12926,
Artikelnummer: 129260Y
Verlag
SPIE
Verlagsort
1000 20th St, Po Box 10, Bellingham, Wa 98227-0010 Usa
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Förderungen
Ministry of Science and Innovation of Spain
European Union
European Union