PuSH - Publikationsserver des Helmholtz Zentrums München

Robledo, J.I.* ; Frielinghaus, H.* ; Willendrup, P.* ; Lieutenant, K.*

Learning from virtual experiments to assist users of Small Angle Neutron Scattering in model selection.

Sci. Rep. 14, 11 (2024)
Verlagsversion DOI
Open Access Gold
In this work, we combine the advantages of virtual Small Angle Neutron Scattering (SANS) experiments carried out by Monte Carlo simulations with the recent advances in computer vision to generate a tool that can assist SANS users in small angle scattering model selection. We generate a dataset of almost 260.000 SANS virtual experiments of the SANS beamline KWS-1 at FRM-II, Germany, intended for Machine Learning purposes. Then, we train a recommendation system based on an ensemble of Convolutional Neural Networks to predict the SANS model from the two-dimensional scattering pattern measured at the position-sensitive detector of the beamline. The results show that the CNNs can learn the model prediction task, and that this recommendation system has a high accuracy in the classification task on 46 different SANS models. We also test the network with real data and explore the outcome. Finally, we discuss the reach of counting with the set of virtual experimental data presented here, and of such a recommendation system in the SANS user data analysis procedure.
Impact Factor
Scopus SNIP
Altmetric
3.800
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Convolutional Neural Network ; Machine Learning ; Monte Carlo ; Neutron ; Sans Dataset
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2045-2322
e-ISSN 2045-2322
Zeitschrift Scientific Reports
Quellenangaben Band: 14, Heft: 1, Seiten: 11 Artikelnummer: , Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz AI - FZJ (HAI - FZJ)
Förderungen European Union
Scopus ID 85197252342
Erfassungsdatum 2024-07-09