PuSH - Publikationsserver des Helmholtz Zentrums München

Voggenreiter, E.* ; Schmitt-Kopplin, P. ; ThomasArrigo, L.* ; Bryce, C.* ; Kappler, A.* ; Joshi, P.*

Emerging investigator series: Preferential adsorption and coprecipitation of permafrost organic matter with poorly crystalline iron minerals.

Environ. Sci. Process Impacts, DOI: 10.1039/d4em00241e (2024)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Future permafrost thaw will likely lead to substantial release of greenhouse gases due to thawing of previously unavailable organic carbon (OC). Accurate predictions of this release are limited by poor knowledge of the bioavailability of mobilized OC during thaw. Organic carbon bioavailability decreases due to adsorption to, or coprecipitation with, poorly crystalline ferric iron (Fe(III)) (oxyhydr)oxide minerals but the maximum binding extent and binding selectivity of permafrost OC to these minerals is unknown. We therefore utilized water-extractable organic matter (WEOM) from soils across a permafrost thaw gradient to quantify adsorption and coprecipitation processes with poorly crystalline Fe(III) (oxyhydr)oxides. We found that the maximum adsorption capacity of WEOM from intact and partly thawed permafrost soils was similar (204 and 226 mg C g-1 ferrihydrite, respectively) but decreased to 81 mg C g-1 ferrihydrite for WEOM from the fully thawed site. In comparison, coprecipitation of WEOM from intact and partly thawed soils with Fe immobilized up to 925 and 1532 mg C g-1 Fe respectively due to formation of precipitated Fe(III)-OC phases. Analysis of the OC composition before and after adsorption/coprecipitation revealed that high molecular weight, oxygen-rich, carboxylic- and aromatic-rich OC was preferentially bound to Fe(III) minerals relative to low molecular weight, aliphatic-rich compounds which may be more bioavailable. This selective binding effect was stronger after adsorption than coprecipitation. Our results suggest that OC binding by Fe(III) (oxyhydr)oxides sharply decreases under fully thawed conditions and that small, aliphatic OC molecules that may be readily bioavailable are less protected across all thaw stages.
Impact Factor
Scopus SNIP
Altmetric
4.300
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Solid-phase Extraction; Molecular Fractionation; Temperature Sensitivity; Microbial Reduction; Humic Acids; Carbon; Ferrihydrite; Peat; Associations; Chemistry
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2050-7887
e-ISSN 2050-7895
Verlag Royal Society of Chemistry (RSC)
Verlagsort Cambridge
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Environmental Sciences
PSP-Element(e) G-504800-001
Förderungen SITES
Swedish Polar Research Secretariat
DFG under Germany's Excellence Strategy, cluster of Excellence
German Research Foundation (DFG)
Scopus ID 85198985354
PubMed ID 39007288
Erfassungsdatum 2024-07-25