PuSH - Publikationsserver des Helmholtz Zentrums München

Marin, F.I.* ; Teufel, F.* ; Horlacher, M. ; Madsen, D.H.* ; Pultz, D.* ; Winther, O.* ; Boomsma, W.*

BEND: Benchmarking DNA language models on biologically meaningful tasks.

In: (12th International Conference on Learning Representations, ICLR 2024, 7-11 May 2024, Vienna). 2024. accepted (12th International Conference on Learning Representations, ICLR 2024)
Verlagsversion
The genome sequence contains the blueprint for governing cellular processes. While the availability of genomes has vastly increased over the last decades, experimental annotation of the various functional, non-coding and regulatory elements encoded in the DNA sequence remains both expensive and challenging. This has sparked interest in unsupervised language modeling of genomic DNA, a paradigm that has seen great success for protein sequence data. Although various DNA language models have been proposed, evaluation tasks often differ between individual works, and might not fully recapitulate the fundamental challenges of genome annotation, including the length, scale and sparsity of the data. In this study, we introduce BEND, a Benchmark for DNA language models, featuring a collection of realistic and biologically meaningful downstream tasks defined on the human genome. We find that embeddings from current DNA LMs can approach performance of expert methods on some tasks, but only capture limited information about long-range features. BEND is available at https://github.com/frederikkemarin/BEND.
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
Konferenztitel 12th International Conference on Learning Representations, ICLR 2024
Konferzenzdatum 7-11 May 2024
Konferenzort Vienna
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-004
Scopus ID 85200584697
Erfassungsdatum 2024-09-04