PuSH - Publikationsserver des Helmholtz Zentrums München

Zhang, J.* ; Marciano, D.* ; Wang, L.* ; Wang, W.* ; Gossen, M.* ; Yang, M.* ; Peng, T. ; Gautrot, J.* ; Xu, X.* ; Ma, N.*

Bioinspired hyaluronica acid-based hydrogel fuels bi-directional lung organoid maturation via PIEZO1 and ITGB1 mediated mechanosensation.

Adv. Mater. Interfaces, DOI: 10.1002/admi.202400194 (2024)
Verlagsversion DOI
Free journal
Creative Commons Lizenzvertrag
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Lung diseases are one of the leading causes of global mortality. Advances in induced pluripotent stem cell (iPSC) differentiation have enabled the creation of bronchiolar and alveolar lung organoids, advancing research on lung conditions. Traditional Matrigel encapsulation, reliant on the spontaneous assembly and propagation of cells with limited external intervention, often results in variability and low reproducibility. The absence of hyaluronic acid (HA) in Matrigel, a key lung extracellular matrix component, limits bronchiolar and alveolar cell differentiation, reducing the efficacy and reproducibility of iPSC-derived organoid generation. To address this, a novel hybrid hydrogel combining HA and 23% Matrigel, inspired by the natural lung environment, is developed. This hydrogel offers improved biochemical support and viscoelastic properties, significantly accelerating organoid development. Within eight days, the hydrogel produces uniformly sized organoids containing both bronchiolar and alveolar epithelial cells. Increased levels of active mechanosensors and transducers, including PIEZO1, Integrin, and Myosin, suggest that the hydrogel's altered viscoelasticity triggers a mechanotransduction cascade. This bioinspired hydrogel provides a robust, fast model for biomedical research, facilitating rapid drug screening, respiratory disease treatment studies, and surfactant trafficking investigations. Furthermore, it enables the exploration of underlying biomechanical mechanisms to enhance the controllability of organoid generation and maturation.
Impact Factor
Scopus SNIP
Altmetric
4.300
0.835
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Biomechanics ; Hyaluronic Acid (ha) ; Hydrogel ; Lung Organoid ; Piezo1; Actomyosin Contractility; Epithelial-cells; Progenitor Cells; Differentiation; Generation; Regeneration; Mechanisms; Models
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2196-7350
e-ISSN 2196-7350
Verlag Wiley
Verlagsort 111 River St, Hoboken 07030-5774, Nj Usa
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-530006-001
Förderungen Helmholtz Association - Munich School for Data Science (MUDS)
Helmholtz Imaging Project "AIOrganoid", China Scholarship Council
Helmholtz Association of German Research Centers
Scopus ID 85202924570
Erfassungsdatum 2024-09-10