Zhang, J.* ; Marciano, D.* ; Wang, L.* ; Wang, W.* ; Gossen, M.* ; Yang, M.* ; Peng, T. ; Gautrot, J.* ; Xu, X.* ; Ma, N.*
Bioinspired hyaluronica acid-based hydrogel fuels bi-directional lung organoid maturation via PIEZO1 and ITGB1 mediated mechanosensation.
Adv. Mater. Interfaces, DOI: 10.1002/admi.202400194 (2024)
Lung diseases are one of the leading causes of global mortality. Advances in induced pluripotent stem cell (iPSC) differentiation have enabled the creation of bronchiolar and alveolar lung organoids, advancing research on lung conditions. Traditional Matrigel encapsulation, reliant on the spontaneous assembly and propagation of cells with limited external intervention, often results in variability and low reproducibility. The absence of hyaluronic acid (HA) in Matrigel, a key lung extracellular matrix component, limits bronchiolar and alveolar cell differentiation, reducing the efficacy and reproducibility of iPSC-derived organoid generation. To address this, a novel hybrid hydrogel combining HA and 23% Matrigel, inspired by the natural lung environment, is developed. This hydrogel offers improved biochemical support and viscoelastic properties, significantly accelerating organoid development. Within eight days, the hydrogel produces uniformly sized organoids containing both bronchiolar and alveolar epithelial cells. Increased levels of active mechanosensors and transducers, including PIEZO1, Integrin, and Myosin, suggest that the hydrogel's altered viscoelasticity triggers a mechanotransduction cascade. This bioinspired hydrogel provides a robust, fast model for biomedical research, facilitating rapid drug screening, respiratory disease treatment studies, and surfactant trafficking investigations. Furthermore, it enables the exploration of underlying biomechanical mechanisms to enhance the controllability of organoid generation and maturation.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Biomechanics ; Hyaluronic Acid (ha) ; Hydrogel ; Lung Organoid ; Piezo1; Actomyosin Contractility; Epithelial-cells; Progenitor Cells; Differentiation; Generation; Regeneration; Mechanisms; Models
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
2196-7350
e-ISSN
2196-7350
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band:
Heft:
Seiten:
Artikelnummer:
Supplement:
Reihe
Verlag
Wiley
Verlagsort
111 River St, Hoboken 07030-5774, Nj Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530006-001
Förderungen
Helmholtz Association - Munich School for Data Science (MUDS)
Helmholtz Imaging Project "AIOrganoid", China Scholarship Council
Helmholtz Association of German Research Centers
Copyright
Erfassungsdatum
2024-09-10