PuSH - Publikationsserver des Helmholtz Zentrums München

Papamarkou, T.* ; Birdal, T.* ; Bronstein, M.D.* ; Carlsson, G.* ; Curry, J.* ; Gao, Y.* ; Hajij, M.* ; Kwitt, R.* ; Liò, P.* ; Di Lorenzo, P.* ; Maroulas, V.* ; Miolane, N.* ; Nasrin, F.* ; Ramamurthy, K.N.* ; Rieck, B. ; Scardapane, S.* ; Schaub, M.T.* ; Veličković, P.* ; Wang, B.* ; Wang, Y.* ; Wei, G.W.* ; Zamzmi, G.*

Position: Topological deep learning is the new frontier for relational learning.

In: (41st International Conference on Machine Learning, 21-27 July 2024, Vienna). 2024. 39529-39555 (Proceedings of Machine Learning Research ; 235)
PMC
Topological deep learning (TDL) is a rapidly evolving field that uses topological features to understand and design deep learning models. This paper posits that TDL is the new frontier for relational learning. TDL may complement graph representation learning and geometric deep learning by incorporating topological concepts, and can thus provide a natural choice for various machine learning settings. To this end, this paper discusses open problems in TDL, ranging from practical benefits to theoretical foundations. For each problem, it outlines potential solutions and future research opportunities. At the same time, this paper serves as an invitation to the scientific community to actively participate in TDL research to unlock the potential of this emerging field.
Altmetric
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
Konferenztitel 41st International Conference on Machine Learning
Konferzenzdatum 21-27 July 2024
Konferenzort Vienna
Quellenangaben Band: 235, Heft: , Seiten: 39529-39555 Artikelnummer: , Supplement: ,
Institut(e) Institute of AI for Health (AIH)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540003-001
Scopus ID 85203808944
PubMed ID 40196046
Erfassungsdatum 2024-09-20