PuSH - Publikationsserver des Helmholtz Zentrums München

Fast context-based low-light image enhancement via neural implicit representations.

In: (Computer Vision – ECCV 2024). Berlin [u.a.]: Springer, 2025. 413-430 (Lect. Notes Comput. Sc. ; 15144)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Current deep learning-based low-light image enhancement methods often struggle with high-resolution images, and fail to meet the practical demands of visual perception across diverse and unseen scenarios. In this paper, we introduce a novel approach termed CoLIE, which redefines the enhancement process through mapping the 2D coordinates of an underexposed image to its illumination component, conditioned on local context. We propose a reconstruction of enhanced-light images within the HSV space utilizing an implicit neural function combined with an embedded guided filter, thereby significantly reducing computational overhead. Moreover, we introduce a single image-based training loss function to enhance the model's adaptability to various scenes, further enhancing its practical applicability. Through rigorous evaluations, we analyze the properties of our proposed framework, demonstrating its superiority in both image quality and scene adaptability. Furthermore, our evaluation extends to applications in downstream tasks within low-light scenarios, underscoring the practical utility of CoLIE. The source code is available at https://github.com/ctom2/colie.
Scopus
Cited By
Altmetric
9
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Schlagwörter Low-light image; Illumination estimation; Neural implicit representation
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Konferenztitel Computer Vision – ECCV 2024
Quellenangaben Band: 15144, Heft: , Seiten: 413-430 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin [u.a.]
Institut(e) Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Institute of Lung Health and Immunity (LHI)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30205 - Bioengineering and Digital Health
30202 - Environmental Health
Forschungsfeld(er) Enabling and Novel Technologies
Lung Research
PSP-Element(e) G-530006-001
G-505000-001
G-507100-001
Förderungen Helmholtz Association under the joint research school "Munich School for Data Science -MUDS"
Scopus ID 105018233995
Erfassungsdatum 2024-12-10