PuSH - Publikationsserver des Helmholtz Zentrums München

McClean, M. ; Panciu, T.C.* ; Lange, C.* ; Duarte, R.G.* ; Theis, F.J.

Artificial intelligence in tuberculosis: A new ally in disease control.

Breathe 20:240056 (2024)
Verlagsversion DOI PMC
Free journal
Creative Commons Lizenzvertrag
The challenges to effective tuberculosis (TB) disease control are considerable, and the current global targets for reductions in disease burden seem unattainable. The combination of complex pathophysiology and technical limitations results in difficulties in achieving consistent, reliable diagnoses, and long treatment regimens imply serious physiological and socioeconomic consequences for patients. Artificial intelligence (AI) applications in healthcare have significantly improved patient care regarding diagnostics, treatment and basic research. However, their success relies on infrastructures prioritising comprehensive data generation and collaborative research environments to foster stakeholder engagement. This viewpoint article briefly outlines the current and potential applications of advanced AI models in global TB control and the considerations and implications of adopting these tools within the public health community.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Altmetric
2.300
0.000
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Schlagwörter Diagnosis; Impact
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 1810-6838
e-ISSN 2073-4735
Zeitschrift Breathe
Quellenangaben Band: 20, Heft: 3, Seiten: , Artikelnummer: 240056 Supplement: ,
Verlag Maney Publishing
Verlagsort Leeds
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Förderungen
DZIF
German Federal Ministry of Education and Research
Ludwig-Maximilians-Universitaet Muenchen (LMU)
Deutsches Zentrum fuer Infektionsforschung e. V. (DZIF)
EFPIA
European Union
Innovative Medicines Initiative 2 Joint Undertaking (JU)
Scopus ID 85213064474
PubMed ID 39660086
Erfassungsdatum 2024-12-12