PuSH - Publikationsserver des Helmholtz Zentrums München

Spieker, V. ; Eichhorn, H. ; Stelter, J.K.* ; Huang, W.* ; Braren, R.F.* ; Rueckert, D.* ; Sahli Costabal, F.* ; Hammernik, K.* ; Prieto, C.* ; Karampinos, D.C.* ; Schnabel, J.A.

Self-supervised k-space regularization for motion-resolved abdominal MRI using neural implicit k-space representations.

In: (Medical Image Computing and Computer Assisted Intervention – MICCAI 2024). Berlin [u.a.]: Springer, 2024. 614-624 (Lect. Notes Comput. Sc. ; 15007 LNCS)
DOI
Neural implicit k-space representations have shown promising results for dynamic MRI at high temporal resolutions. Yet, their exclusive training in k-space limits the application of common image regularization methods to improve the final reconstruction. In this work, we introduce the concept of parallel imaging-inspired self-consistency (PISCO), which we incorporate as novel self-supervised k-space regularization enforcing a consistent neighborhood relationship. At no additional data cost, the proposed regularization significantly improves neural implicit k-space reconstructions on simulated data. Abdominal in-vivo reconstructions using PISCO result in enhanced spatio-temporal image quality compared to state-of-the-art methods. Code is available at https://github.com/compai-lab/2024-miccai-spieker.
Altmetric
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Schlagwörter Dynamic Mri Reconstruction ; Implicit Neural Representations ; K-space Refinement ; Parallel Imaging ; Self-supervised Learning
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Konferenztitel Medical Image Computing and Computer Assisted Intervention – MICCAI 2024
Quellenangaben Band: 15007 LNCS, Heft: , Seiten: 614-624 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin [u.a.]
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-507100-001
Scopus ID 85212521047
Erfassungsdatum 2025-01-10