Melo-Narváez, C. ; Gölitz, F.* ; Jain, E. ; Gote-Schniering, J.* ; Stoleriu, M.-G. ; Bertrams, W.* ; Schmeck, B.* ; Yildirim, A.Ö. ; Rauen, U.* ; Wille, T.* ; Lehmann, M.
Cold storage of human precision-cut lung slices in TiProtec preserves cellular composition and transcriptional responses and enables on-demand mechanistic studies.
Respir. Res. 26:57 (2025)
BACKGROUND: Human precision-cut lung slices (hPCLS) are a unique platform for functional, mechanistic, and drug discovery studies in the field of respiratory research. However, tissue availability, generation, and cultivation time represent important challenges for their usage. Therefore, the present study evaluated the efficacy of a specifically designed tissue preservation solution, TiProtec, complete or in absence (-) of iron chelators, for long-term cold storage of hPCLS. METHODS: hPCLS were generated from peritumor control tissues and stored in DMEM/F-12, TiProtec, or TiProtec (-) for up to 28 days. Viability, metabolic activity, and tissue structure were determined. Moreover, bulk-RNA sequencing was used to study transcriptional changes, regulated signaling pathways, and cellular composition after cold storage. Induction of cold storage-associated senescence was determined by transcriptomics and immunofluorescence (IF). Finally, cold-stored hPCLS were exposed to a fibrotic cocktail and early fibrotic changes were assessed by RT-qPCR and IF. RESULTS: Here, we found that TiProtec preserves the viability, metabolic activity, transcriptional profile, as well as cellular composition of hPCLS for up to 14 days. Cold storage did not significantly induce cellular senescence in hPCLS. Moreover, TiProtec downregulated pathways associated with cell death, inflammation, and hypoxia while activating pathways protective against oxidative stress. Cold-stored hPCLS remained responsive to fibrotic stimuli and upregulated extracellular matrix-related genes such as fibronectin and collagen 1 as well as alpha-smooth muscle actin, a marker for myofibroblasts. CONCLUSIONS: Optimized long-term cold storage of hPCLS preserves their viability, metabolic activity, transcriptional profile, and cellular composition for up to 14 days, specifically in TiProtec. Finally, our study demonstrated that cold-stored hPCLS can be used for on-demand mechanistic studies relevant for respiratory research.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
3r ; Fibrosis ; Human Lung Models ; Human Precision-cut Lung Slices (hpcls) ; Long-term Cold Storage ; Tiprotec ; Tissue Preservation; Liver Endothelial-cells; Induced Apoptosis; Cultured-hepatocytes; Immune-responses; Hypoxic Injury; Iron Chelators; Test System; Glycine; Protection; Tissue
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
1465-9921
e-ISSN
1465-993X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 26,
Heft: 1,
Seiten: ,
Artikelnummer: 57
Supplement: ,
Reihe
Verlag
BioMed Central
Verlagsort
Campus, 4 Crinan St, London N1 9xw, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Lung Research
PSP-Element(e)
G-501600-005
G-503100-001
G-501600-001
G-505000-007
Förderungen
Von Behring Roentgen Foundation
Federal Institute for Risk assessment (Bundesinstitut fur Risikobewertung, BfR)
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
German Center for Lung Research (DZL)
German Research Foundation
Projekt DEAL
Copyright
Erfassungsdatum
2025-04-11