BACKGROUND: Elevated low-frequency activity (4-12 Hz) within the globus pallidus internus (GPi) has been consistently associated with dystonia. However, the impacts of the genetic etiology of dystonia on low-frequency GPi activity remain unclear; yet it holds importance for adaptive deep brain stimulation (DBS) treatment. METHODS: We compared the properties of GPi electrophysiology acquired from 70 microelectrode recordings (MER) trajectories of DYT-GNAL, DYT-KMT2B, DYT-SGCE, DYT-THAP1, DYT-TOR1A, DYT-VPS16, and idiopathic dystonia (iDYT) patients who underwent GPi-DBS surgery across standard frequency bands. RESULTS: DYT-SGCE patients exhibited significantly lower alpha band activity (2.97%) compared to iDYT (4.44%, p = 0.006) and DYT-THAP1 (4.51%, p = 0.011). Additionally, theta band power was also significantly reduced in DYT-SGCE (4.42%) compared to iDYT and DYT-THAP1 (7.91% and 7.00%, p < 0.05). Instead, the genetic etiology of dystonia did not affect the spatial characteristics of GPi electrophysiology along MER trajectories. CONCLUSION: Considering the genetic etiology of dystonia in closed-loop DBS treatments and utilizing theta and alpha activity for GPi stimulation may optimize clinical outcomes. MER-based DBS lead placement can proceed independently of the underlying genetic cause.