PuSH - Publikationsserver des Helmholtz Zentrums München

Quinzan, F.* ; Casolo, C. ; Muandet, K.* ; Luo, Y.* ; Kilbertus, N.

Learning counterfactually invariant predictors.

Trans. Machine Learn. Res. 2024, accepted (2024)
Verlagsversion
Closed
Creative Commons Lizenzvertrag
Notions of counterfactual invariance (CI) have proven essential for predictors that are fair, robust, and generalizable in the real world. We propose graphical criteria that yield a sufficient condition for a predictor to be counterfactually invariant in terms of a conditional independence in the observational distribution. In order to learn such predictors, we propose a model-agnostic framework, called Counterfactually Invariant Prediction (CIP), building on the Hilbert-Schmidt Conditional Independence Criterion (HSCIC), a kernel-based conditional dependence measure. Our experimental results demonstrate the effectiveness of CIP in enforcing counterfactual invariance across various simulated and real-world datasets including scalar and multi-variate settings.
Impact Factor
Scopus SNIP
0.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2835-8856
e-ISSN 2835-8856
Quellenangaben Band: 2024 Heft: , Seiten: , Artikelnummer: , Supplement: ,
Verlag Journal of Machine Learning Research Inc.
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-530003-001
Scopus ID 85219567092
Erfassungsdatum 2025-05-10