PuSH - Publikationsserver des Helmholtz Zentrums München

Quinzan, F.* ; Casolo, C. ; Muandet, K.* ; Luo, Y.* ; Kilbertus, N.

Learning counterfactually invariant predictors.

Trans. Machine Learn. Res. 2024, accepted (2024)
Postprint
Notions of counterfactual invariance (CI) have proven essential for predictors that are fair, robust, and generalizable in the real world. We propose graphical criteria that yield a sufficient condition for a predictor to be counterfactually invariant in terms of a conditional independence in the observational distribution. In order to learn such predictors, we propose a model-agnostic framework, called Counterfactually Invariant Prediction (CIP), building on the Hilbert-Schmidt Conditional Independence Criterion (HSCIC), a kernel-based conditional dependence measure. Our experimental results demonstrate the effectiveness of CIP in enforcing counterfactual invariance across various simulated and real-world datasets including scalar and multi-variate settings.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
ISSN (print) / ISBN 2835-8856
e-ISSN 2835-8856
Quellenangaben Band: 2024 Heft: , Seiten: , Artikelnummer: , Supplement: ,
Verlag Journal of Machine Learning Research Inc.
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed