Meisenbacher, S.* ; Phipps, K.* ; Taubert, O.* ; Weiel, M.* ; Götz, M.* ; Mikut, R.* ; Hagenmeyer, V.*
AutoPQ: Automating quantile estimation from point forecasts in the context of sustainability.
Appl. Energy 392, 24 (2025)
Optimizing smart grid operations relies on critical decision-making informed by uncertainty quantification, making probabilistic forecasting a vital tool. However, designing such forecasting models presents three key challenges: achieving accurate and unbiased uncertainty quantification, reducing the workload for data scientists during the design process, and minimizing the environmental impact of model training. In order to address these challenges, we introduce AutoPQ, a novel method that fully automates and optimizes probabilistic forecasting for smart grid applications. AutoPQ enhances forecast uncertainty quantification by generating high-quality quantile forecasts from an existing point forecast by using a conditional Invertible Neural Network (cINN). Furthermore, AutoPQ automates the selection of the optimal point forecasting method and fine-tunes hyperparameters, ensuring the best-possible model and configuration for each application. For flexible adaptation to various performance needs and available computing power, AutoPQ comes with a default and an advanced configuration, making it suitable for a wide range of smart grid applications. We demonstrate that AutoPQ surpasses state-of-the-art probabilistic forecasting methods while effectively limiting computational effort and hence environmental impact. Additionally and in the context of sustainability, AutoPQ provides full transparency regarding the electricity consumption required for performance improvements.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Automl ; Energy Consumption ; Probabilistic Time Series Forecasting ; Uncertainty Quantification; Optimal Power-flow; Time-series; Probabilistic-forecasts; Prediction; Regression; Generation; Forest; Model; Risk
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0306-2619
e-ISSN
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 392,
Heft: ,
Seiten: 24
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Amsterdam [u.a.]
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Helmholtz AI - KIT (HAI - KIT)
POF Topic(s)
Forschungsfeld(er)
PSP-Element(e)
Förderungen
Federal Ministry of Education and Research
Ministry of Science, Research and the Arts Baden-Wurttemberg
Helmholtz Association's Initiative and Networking Fund through Helmholtz AI
Helmholtz Association under the Program "Energy System Design"
Copyright
Erfassungsdatum
2025-04-30