Tran, M. ; Schmidle, P.* ; Guo, R.R.* ; Wagner, S. ; Koch, V. ; Lupperger, V.* ; Novotny, B.* ; Murphree, D.H.* ; Hardway, H.D.* ; D'Amato, M.* ; Lefkes, J.* ; Geijs, D.J.* ; Feuchtinger, A. ; Böhner, A.* ; Kaczmarczyk, R.* ; Biedermann, T.* ; Amir, A.L.* ; Mooyaart, A.L.* ; Ciompi, F.* ; Litjens, G.* ; Wang, C.* ; Comfere, N.I.* ; Eyerich, K.* ; Braun, S.A.* ; Marr, C. ; Peng, T.
Generating dermatopathology reports from gigapixel whole slide images with HistoGPT.
Nat. Commun. 16:4886 (2025)
Histopathology is the reference standard for diagnosing the presence and nature of many diseases, including cancer. However, analyzing tissue samples under a microscope and summarizing the findings in a comprehensive pathology report is time-consuming, labor-intensive, and non-standardized. To address this problem, we present HistoGPT, a vision language model that generates pathology reports from a patient's multiple full-resolution histology images. It is trained on 15,129 whole slide images from 6705 dermatology patients with corresponding pathology reports. The generated reports match the quality of human-written reports for common and homogeneous malignancies, as confirmed by natural language processing metrics and domain expert analysis. We evaluate HistoGPT in an international, multi-center clinical study and show that it can accurately predict tumor subtypes, tumor thickness, and tumor margins in a zero-shot fashion. Our model demonstrates the potential of artificial intelligence to assist pathologists in evaluating, reporting, and understanding routine dermatopathology cases.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Foundation Model
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
2041-1723
e-ISSN
2041-1723
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 16,
Heft: 1,
Seiten: ,
Artikelnummer: 4886
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
30202 - Environmental Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530006-001
G-540007-001
A-630600-001
Förderungen
Hightech Agenda Bayern
European Research Council (ERC)
Helmholtz Association under the joint research school "Munich School for Data Science-MUDS
Copyright
Erfassungsdatum
2025-05-28