PuSH - Publikationsserver des Helmholtz Zentrums München

Erdur, A.C.* ; Scholz, D.* ; Nguyen, Q.M.* ; Buchner, J.A.* ; Mayinger, M.* ; Christ, S.M.* ; Brunner, T.B.* ; Wittig, A.* ; Zimmer, C.* ; Meyer, B.* ; Guckenberger, M.* ; Andratschke, N.* ; El Shafie, R.A.* ; Debus, J.U.* ; Rogers, S.* ; Riesterer, O.* ; Schulze, K.* ; Feldmann, H.J.* ; Blanck, O.* ; Zamboglou, C.* ; Bilger-Z, A.* ; Grosu, A.L.* ; Wolff, R.* ; Eitz, K.A. ; Combs, S.E. ; Bernhardt, D.* ; Wiestler, B.* ; Rueckert, D.* ; Peeken, J.C.

Improving risk assessment of local failure in brain metastases patients using vision transformers - A multicentric development and validation study.

Radiother. Oncol. 210:111031 (2025)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
BACKGROUND AND PURPOSE: This study investigates the use of Vision Transformers (ViTs) to predict Freedom from Local Failure (FFLF) in patients with brain metastases using pre-operative MRI scans. The goal is to develop a model that enhances risk stratification and informs personalized treatment strategies. MATERIALS AND METHODS: Within the AURORA retrospective trial, patients (n = 352) who received surgical resection followed by post-operative stereotactic radiotherapy (SRT) were collected from seven hospitals. We trained our ViT for the direct image-to-risk task on T1-CE and FLAIR sequences and combined clinical features along the way. We employed segmentation-guided image modifications, model adaptations, and specialized patient sampling strategies during training. The model was evaluated with five-fold cross-validation and ensemble learning across all validation runs. An external, international test cohort (n = 99) within the dataset was used to assess the generalization capabilities of the model, and saliency maps were generated for explainability analysis. RESULTS: We achieved a competent C-Index score of 0.7982 on the test cohort, surpassing all clinical, CNN-based, and hybrid baselines. Kaplan-Meier analysis showed significant FFLF risk stratification. Saliency maps focusing on the BM core confirmed that model explanations aligned with expert observations. CONCLUSIO: Our ViT-based model offers a potential for personalized treatment strategies and follow-up regimens in patients with brain metastases. It provides an alternative to radiomics as a robust, automated tool for clinical workflows, capable of improving patient outcomes through effective risk assessment and stratification.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Artificial Intelligence ; Brain Metastases ; Stereotactic Radiotherapy ; Vision Transformers; Stereotactic Radiosurgery
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 0167-8140
e-ISSN 1879-0887
Quellenangaben Band: 210, Heft: , Seiten: , Artikelnummer: 111031 Supplement: ,
Verlag Elsevier
Verlagsort Elsevier House, Brookvale Plaza, East Park Shannon, Co, Clare, 00000, Ireland
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Radiation Sciences
PSP-Element(e) G-501300-001
Förderungen Deutsche Forschungsgemeinschaft (DFG, German Research foundation)
Scopus ID 105010440158
PubMed ID 40618900
Erfassungsdatum 2025-07-16