Erdur, A.C.* ; Scholz, D.* ; Nguyen, Q.M.* ; Buchner, J.A.* ; Mayinger, M.* ; Christ, S.M.* ; Brunner, T.B.* ; Wittig, A.* ; Zimmer, C.* ; Meyer, B.* ; Guckenberger, M.* ; Andratschke, N.* ; El Shafie, R.A.* ; Debus, J.U.* ; Rogers, S.* ; Riesterer, O.* ; Schulze, K.* ; Feldmann, H.J.* ; Blanck, O.* ; Zamboglou, C.* ; Bilger-Z, A.* ; Grosu, A.L.* ; Wolff, R.* ; Eitz, K.A. ; Combs, S.E. ; Bernhardt, D.* ; Wiestler, B.* ; Rueckert, D.* ; Peeken, J.C.
Improving risk assessment of local failure in brain metastases patients using vision transformers - A multicentric development and validation study.
Radiother. Oncol. 210:111031 (2025)
BACKGROUND AND PURPOSE: This study investigates the use of Vision Transformers (ViTs) to predict Freedom from Local Failure (FFLF) in patients with brain metastases using pre-operative MRI scans. The goal is to develop a model that enhances risk stratification and informs personalized treatment strategies. MATERIALS AND METHODS: Within the AURORA retrospective trial, patients (n = 352) who received surgical resection followed by post-operative stereotactic radiotherapy (SRT) were collected from seven hospitals. We trained our ViT for the direct image-to-risk task on T1-CE and FLAIR sequences and combined clinical features along the way. We employed segmentation-guided image modifications, model adaptations, and specialized patient sampling strategies during training. The model was evaluated with five-fold cross-validation and ensemble learning across all validation runs. An external, international test cohort (n = 99) within the dataset was used to assess the generalization capabilities of the model, and saliency maps were generated for explainability analysis. RESULTS: We achieved a competent C-Index score of 0.7982 on the test cohort, surpassing all clinical, CNN-based, and hybrid baselines. Kaplan-Meier analysis showed significant FFLF risk stratification. Saliency maps focusing on the BM core confirmed that model explanations aligned with expert observations. CONCLUSIO: Our ViT-based model offers a potential for personalized treatment strategies and follow-up regimens in patients with brain metastases. It provides an alternative to radiomics as a robust, automated tool for clinical workflows, capable of improving patient outcomes through effective risk assessment and stratification.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Artificial Intelligence ; Brain Metastases ; Stereotactic Radiotherapy ; Vision Transformers; Stereotactic Radiosurgery
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0167-8140
e-ISSN
1879-0887
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 210,
Heft: ,
Seiten: ,
Artikelnummer: 111031
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Elsevier House, Brookvale Plaza, East Park Shannon, Co, Clare, 00000, Ireland
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Radiation Sciences
PSP-Element(e)
G-501300-001
Förderungen
Deutsche Forschungsgemeinschaft (DFG, German Research foundation)
Copyright
Erfassungsdatum
2025-07-16