Singh, A. ; Southam, L. ; Hatzikotoulas, K. ; Rayner, N.W. ; Suzuki, K.* ; Taylor, H.J.* ; Yin, X.* ; Mandla, R.* ; Huerta-Chagoya, A.* ; Morris, A.P. ; Zeggini, E. ; Bocher, O.
Correcting for genomic inflation leads to loss of power in large-scale Genome-wide association study meta-analysis.
Genet. Epidemiol. 49:e70016 (2025)
Inflation in genome-wide association studies (GWAS) summary statistics represents a major challenge, for which correction methods have been developed. These include the genomic control (GC) method, which uses the λ-value to correct summary statistics, and the linkage disequilibrium score regression (LDSR) method, which uses the LDSR intercept. By using type 2 diabetes (T2D) as an exemplar, we explore factors influencing λ-values and the impact of these corrections on association signals. We find that larger sample sizes increase λ-values due to increased captured polygenicity, while including lower frequency variants decreases λ-values due to reduced power. Comparing T2D genetic associations described in overlapping GWAS meta-analyses of increasing sample size, we find that GC correction reduces the false positive rate and leads to the loss of robust associations. In one of the largest meta-analysis, GC correction results in 39.7% loss of independent loci, substantially reducing the number of detected associations. In comparison, the LDSR intercept correction leads to a loss of up to 25.2% of the independent loci, being therefore less conservative than the GC correction. We conclude that in large, well-powered GWAS meta-analysis of polygenic traits, both GC and LDSR intercept correction leads to power loss, highlighting the need for improved genomic inflation correction methods.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Gwas Meta‐analysis ; Ld‐score Regression ; Genetic Associations ; Genomic Control ; Genomic Inflation; Complex Traits; Rare Variants; Polygenicity; Regression; Discovery; Efficient
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0741-0395
e-ISSN
1098-2272
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 49,
Heft: 6,
Seiten: ,
Artikelnummer: e70016
Supplement: ,
Reihe
Verlag
Wiley
Verlagsort
111 River St, Hoboken 07030-5774, Nj Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Translational Genomics (ITG)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-506700-001
Förderungen
Archit Singh and Dr Ozvan Bocher have received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No 101017802 (OPTOMICS).
Copyright
Erfassungsdatum
2025-10-01