The CGG triplet repeat binding protein 1 (CGGBP1) binds to CGG repeats and has several important cellular functions, but how this DNA sequence-specific binding factor affects transcription and replication processes is an open question. Here, we show that CGGBP1 binds human gene promoters containing short (< 5) CGG-repeat tracts prone to R-loop formation. Loss of CGGBP1 leads to deregulated transcription, transcription-replication-conflicts (TRCs) and accumulation of Serine-5 phosphorylated RNA polymerase II (RNAPII), indicative of promoter-proximal stalling and a defect in transcription elongation. Consistently, an episomal CGG-repeat-containing model locus as well as endogenous genes show deregulated transcription, R-loop accumulation and increased RNAPII chromatin occupancy in CGGBP1-depleted cells. We identify the DEAD-box RNA:DNA helicases DDX41 and DHX15 as interaction partners specifically recruited by CGGBP1. Co-depletion experiments show that DDX41 and CGGBP1 work in the same pathway to unwind R-loops and avoid TRCs. Together, our work shows that short trinucleotide repeats are a source of genome-destabilizing secondary structures, and cells rely on specific DNA-binding factors to maintain proper transcription and replication coordination at short CGG repeats.