PuSH - Publikationsserver des Helmholtz Zentrums München

van der Graaf, A.* ; Warmerdam, R.* ; Auwerx, C.* ; Võsa, U.* ; Borges, M.C.* ; Franke, L.* ; eQTLGen Consortium (Farzeen, A. ; Gieger, C. ; Peters, A.)

MR-link-2: Pleiotropy robust cis Mendelian randomization validated in three independent reference datasets of causality.

Nat. Commun. 16:6112 (2025)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Mendelian randomization (MR) identifies causal relationships from observational data but has increased Type 1 error rates (T1E) when genetic instruments are limited to a single associated region, a typical scenario for molecular exposures. We developed MR-link-2, which leverages summary statistics and linkage disequilibrium (LD) to estimate causal effects and pleiotropy in a single region. We compare MR-link-2 to other cis MR methods: i) In simulations, MR-link-2 has calibrated T1E and high power. ii) We reidentify metabolic reactions from three metabolic pathway references using four independent metabolite quantitative trait locus studies. MR-link-2 often (76%) outperforms other methods in area under the receiver operator characteristic curve (AUC) (up to 0.80). iii) For canonical causal relationships between complex traits, MR-link-2 has lower per-locus T1E (0.096 vs. min. 0.142, at 5% level), identifying all but one of the true causal links, reducing cross-locus causal effect heterogeneity to almost half. iv) Testing causal direction between blood cell compositions and marker gene expression shows MR-link-2 has superior AUC (0.82 vs. 0.68). Finally, analyzing causality between metabolites not directly connected by canonical reactions, only MR-link-2 identifies the causal relationship between pyruvate and citrate ( α ̂  = 0.11, P =  7.2⋅10-7), a key citric acid cycle reaction. Overall, MR-link-2 identifies pleiotropy-robust causality from summary statistics in single associated regions, making it well suited for applications to molecular phenotypes.
Impact Factor
Scopus SNIP
Altmetric
15.700
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Zeitschrift Nature Communications
Quellenangaben Band: 16, Heft: 1, Seiten: , Artikelnummer: 6112 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Epidemiology (EPI)
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504091-002
G-504091-004
G-504000-010
PubMed ID 40610416
Erfassungsdatum 2025-09-19