PuSH - Publikationsserver des Helmholtz Zentrums München

Lang, D.M. ; Osuala, R.* ; Spieker, V. ; Lekadir, K.* ; Braren, R.* ; Schnabel, J.A.

Temporal Neural Cellular Automata: Application to Modeling of Contrast Enhancement in Breast MRI.

In: (28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025, 23-27 September 2025, Daejeon). Berlin [u.a.]: Springer, 2026. 604-614 (Lect. Notes Comput. Sc. ; 15963 LNCS)
DOI
Synthetic contrast enhancement offers fast image acquisition and eliminates the need for intravenous injection of contrast agent. This is particularly beneficial for breast imaging, where long acquisition times and high cost are significantly limiting the applicability of (MRI) as a widespread screening modality. Recent studies have demonstrated the feasibility of synthetic contrast generation. However, current (SOTA) methods lack sufficient measures for consistent temporal evolution. (NCA) offer a robust and lightweight architecture to model evolving patterns between neighboring cells or pixels. In this work we introduce TeNCA (Temporal Neural Cellular Automata), which extends and further refines NCAs to effectively model temporally sparse, non-uniformly sampled imaging data. To achieve this, we advance the training strategy by enabling adaptive loss computation and define the iterative nature of the method to resemble a physical progression in time. This conditions the model to learn a physiologically plausible evolution of contrast enhancement. We rigorously train and test TeNCA on a diverse breast MRI dataset and demonstrate its effectiveness, surpassing the performance of existing methods in generation of images that align with ground truth post-contrast sequences. Code: https://github.com/LangDaniel/TeNCA.
Altmetric
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Schlagwörter Dynamic Contrast Enhancement ; Image Synthesis ; Nca
Sprache englisch
Veröffentlichungsjahr 2026
Prepublished im Jahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Konferenztitel 28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025
Konferzenzdatum 23-27 September 2025
Konferenzort Daejeon
Quellenangaben Band: 15963 LNCS, Heft: , Seiten: 604-614 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin [u.a.]
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-507100-001
Scopus ID 105017849961
Erfassungsdatum 2025-10-23