möglich sobald bei der ZB eingereicht worden ist.
Contrastive Anatomy-Contrast Disentanglement: A Domain-General MRI Harmonization Method.
In: (28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025, 23-27 September 2025, Daejeon). Berlin [u.a.]: Springer, 2026. 100-110 (Lect. Notes Comput. Sc. ; 15965 LNCS)
Magnetic resonance imaging (MRI) is an invaluable tool for clinical and research applications. Yet, variations in scanners and acquisition parameters cause inconsistencies in image contrast, hindering data comparability and reproducibility across datasets and clinical studies. Existing scanner harmonization methods, designed to address this challenge face limitations, such as requiring traveling subjects or struggling to generalize to unseen domains. We propose a novel approach using a conditioned diffusion autoencoder with a contrastive loss and domain-agnostic contrast augmentation to harmonize MR images across scanners while preserving subject-specific anatomy. Our method enables brain MRI synthesis from a single reference image. It outperforms baseline techniques, achieving a +7% PSNR improvement on a traveling subjects dataset and +18% improvement on age regression in unseen scanners. Our model provides robust, effective harmonization of brain MRIs to target scanners without requiring fine-tuning. This advancement promises to enhance comparability, reproducibility, and generalizability in multi-site and longitudinal clinical studies, ultimately contributing to improved healthcare outcomes. (The code is publicly available at: https://github.com/daniel-scholz/cacd).
Altmetric
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Contrastive Learning ; Disentanglement ; Domain Generalization ; Scanner Harmonization
Sprache
englisch
Veröffentlichungsjahr
2026
Prepublished im Jahr
2025
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
Konferenztitel
28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025
Konferzenzdatum
23-27 September 2025
Konferenzort
Daejeon
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 15965 LNCS,
Seiten: 100-110
Verlag
Springer
Verlagsort
Berlin [u.a.]
Institut(e)
Institute of Radiation Medicine (IRM)
POF Topic(s)
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Radiation Sciences
PSP-Element(e)
G-501300-001
Scopus ID
105017856389
Erfassungsdatum
2025-10-23