PuSH - Publikationsserver des Helmholtz Zentrums München

Petrich, C. ; Winter, J. ; Dimroth, A.* ; Stolz, J. ; Beiser, T.* ; Dehn, M.* ; Frignani, J.* ; Combs, S.E. ; Schilling, F.* ; Natour, G.* ; Aulenbacher, K.* ; Raulefs, S. ; Schmid, T.E. ; Wilkens, J.J.* ; Bartzsch, S.

Commissioning, characterization and first high dose rate irradiations at a compact X-ray tube for microbeam and minibeam radiation therapy.

Int. J. Radiat. Oncol. Biol. Phys., DOI: 10.1016/j.ijrobp.2025.10.012 (2025)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
BACKGROUND: Minibeam and microbeam radiation therapy promise improved treatment outcomes through reduced normal tissue toxicity at better tumor control rates. The lack of suitable compact radiation sources limits the clinical application of minibeams to superficial tumors and renders it impossible for microbeams. We developed and constructed the first prototype of a compact line-focus X-ray tube (LFXT) with technology potentially suitable for clinical translation of minibeams and microbeams. METHODS: We give an overview of the commissioning process preceding the first operation, present optical and radiological focal spot characterization methods, and dosimetric measurements. Additionally, we report on first preclinical in vitro cell and in vivo mouse brain irradiations conducted with the LFXT prototype. RESULTS: The LFXT was high-voltage conditioned up to 300 kV. The focal spot characterization resulted in a strongly eccentric electron distribution with a width of 72.3 μm. Dosimetry showed sharp microbeam dose profiles with steep lateral penumbras and a peak-to-valley dose ratio above 10 throughout a 70 mm thick PMMA phantom. An open-field dose rate of 4.3 Gy/s was measured at an acceleration voltage of 150 kV and a beam current of 17.4 mA at 150 mm distance from the focal spot. In vitro and in vivo experiments demonstrated the feasibility of the LFXT for minibeam and microbeam applications with field sizes of 1.5 - 2 cm. The mice displayed no observable side effects throughout the follow-up period after whole-brain 260 μm-minibeam irradiation. CONCLUSION: We successfully constructed and commissioned the first proof-of-concept LFXT prototype. Dosimetric characterizations of the achieved microbeam field showed the superiority of the LFXT compared to conventional X-ray tubes in terms of beam quality. In future developments, the remaining limitations of the prototype will be addressed, paving the way for improved minibeam and first ever microbeam radiation therapy in a clinical setting.
Impact Factor
Scopus SNIP
Altmetric
6.500
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Glioblastoma Multiforme ; Line-focus X-ray Tube ; Microbeam Radiation Therapy ; Minibeam Radiation Therapy ; Preclinical Study ; Spatially Fractionated Radiation Therapy ; X-ray Source Development
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 0360-3016
e-ISSN 0360-3016
Verlag Elsevier
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Radiation Medicine (IRM)
Helmholtz AI - FZJ (HAI - FZJ)
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Radiation Sciences
PSP-Element(e) G-501300-001
PubMed ID 41135710
Erfassungsdatum 2025-10-27