RNA-DNA hybrids and R-loops can lead to extensive DNA damage and loss of genomic integrity if not regulated in a timely manner. Although RNase H1 overexpression is frequently used as a tool to resolve R-loops, the regulation of RNase H1, overexpressed or endogenous, remains poorly characterized. We reveal that in yeast, overexpressed RNase H1 (RNH1) has no effect on gene expression, cell growth, or RNA-DNA hybrid resolution in wild-type cells. Overexpressed RNase H1 does, however, remove RNA-DNA hybrids in mutants where hybrids have become dysregulated. Endogenous RNase H1 becomes up-regulated and chromatin-associated in the absence of Sen1 in a DNA replication checkpoint-dependent manner. Rnh1 gets recruited to genomic loci where RNA-DNA hybrids accumulate following the loss of Sen1. Rnh1, together with Sen1, promotes DNA replication at sites of transcription-replication conflict. Hence, RNase H1, overexpressed or endogenous, responds to unscheduled, stress-inducing RNA-DNA hybrids.