PuSH - Publikationsserver des Helmholtz Zentrums München

Bayesian independent component analysis recovers pathway signatures from blood metabolomics data.

J. Proteome Res. 11, 4120-4131 (2012)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Interpreting the complex interplay of metabolites in heterogeneous biosamples still poses a challenging task. In this study, we propose independent component analysis (ICA) as a multivariate analysis tool for the interpretation of large-scale metabolomics data. In particular, we employ a Bayesian ICA method based on a mean-field approach, which allows us to statistically infer the number of independent components to be reconstructed. The advantage of ICA over correlation-based methods like principal component analysis (PCA) is the utilization of higher order statistical dependencies, which not only yield additional information but also allow a more meaningful representation of the data with fewer components. We performed the described ICA approach on a large-scale metabolomics data set of human serum samples, comprising a total of 1764 study probands with 218 measured metabolites. Inspecting the source matrix of statistically independent metabolite profiles using a weighted enrichment algorithm, we observe strong enrichment of specific metabolic pathways in all components. This includes signatures from amino acid metabolism, energy-related processes, carbohydrate metabolism, and lipid metabolism. Our results imply that the human blood metabolome is composed of a distinct set of overlaying, statistically independent signals. ICA furthermore produces a mixing matrix, describing the strength of each independent component for each of the study probands. Correlating these values with plasma high-density lipoprotein (HDL) levels, we establish a novel association between HDL plasma levels and the branched-chain amino acid pathway. We conclude that the Bayesian ICA methodology has the power and flexibility to replace many of the nowadays common PCA and clustering-based analyses common in the research field.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
5.113
1.252
21
22
Tags
Icb_metabo
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter metabolomics; independent component analysis; Bayesian; systems biology; bioinformatics; blood serum; population cohorts; Expression Profiles; Fmri Data; Disease; Classification; Progression; Obesity
Sprache englisch
Veröffentlichungsjahr 2012
HGF-Berichtsjahr 2012
ISSN (print) / ISBN 1535-3893
e-ISSN 1535-3907
Quellenangaben Band: 11, Heft: 8, Seiten: 4120-4131 Artikelnummer: , Supplement: ,
Verlag American Chemical Society (ACS)
Begutachtungsstatus Peer reviewed
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
30201 - Metabolic Health
30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
90000 - German Center for Diabetes Research
Forschungsfeld(er) Enabling and Novel Technologies
Genetics and Epidemiology
PSP-Element(e) G-503700-004
G-505600-001
G-504200-003
G-501900-061
PubMed ID 22713116
Scopus ID 84864595849
Erfassungsdatum 2012-08-20