Methodology for detection of native (underivatized) amino acids (AA) in atmospheric aerosols has been developed. This article describes the use of LC-MS (Q-TOF) and microwave-assisted gas phase hydrolysis for detection of free and combined amino acids in aerosols collected in a Southeastern U.S. forest environment. Accurate mass detection and the addition of isotopically labeled surrogates prior to sample preparation allows for sensitive quantitation of target AA in a complex aerosol matrix. A total of 16 native AA were detected above the reporting threshold as water-soluble free AA, with an average concentration of 22 ± 9 ng m(-3) (N = 13). Following microwave-assisted gas phase hydrolysis, the total AA concentration in the forest environment increased significantly (70 ± 35 ng m(-3)) and additional compounds (methionine, isoleucine) were detected above the reporting threshold. The ability to quantify AA in aerosol samples without derivatization reduces time-consuming preparation procedures while providing the advancement of selective mass determination for important organic nitrogen (ON) species. Details on sample preparation that eliminates the freeze-drying approach typically practiced for water removal with biological samples, and vapor phase microwave hydrolysis parameters are provided. Method application for determination of atmospheric ON is discussed.