Machine learning and network analysis using mathematical optimisation in mass spectrometry bioinformatics.
Machine Learning und Netzwerkanalyse mittels mathematischer Optimierung in massenspektrometrischer Bioinformatik.
München, Technische Universität, Fakultät Wissenschaftszentrum Weihenstephan, Diss., 2014, 199 S.
Publ. Version/Full Text
as soon as is submitted to ZB.
In this work we develop and present a set of novel computational techniques which address the problems of ICR-FT-MS data mining. The described methodology focuses mainly on two scopes of biogeochemical research, namely the analysis of natural organic matter (NOM) and metabolomics. The development of our approaches focuses on the fields of graph theory, machine learning, and combinatorics. Detailed results of our methods are produced, presented, and evaluated within their corresponding sections.
In dieser Arbeit wird ein Set neuer rechnerischer Techniken, welches ICR-FT-MS data mining Probleme adressiert, erarbeitet. Die beschriebenen Methoden konzentrieren sich auf die Analyse natürlicher organischer Materie (NOM) und Metabolomik. Die Entwickelten Ansätze fussen in den Disziplinen der Graphentheorie, Machine Learning und Kombinatorik. Resultate werden in den einzelnen Sektionen detailliert erarbeitet, präsentiert und evaluiert.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Other: Thesis
Document type
Thesis type
Doctoral thesis
Editors
Keywords
Keywords plus
Language
english
Publication Year
2014
Prepublished in Year
HGF-reported in Year
0
ISSN (print) / ISBN
e-ISSN
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: ,
Issue: ,
Pages: 199 S.
Article Number: ,
Supplement: ,
Series
Publisher
Universitätsbibliothek der TU München
Publishing Place
Day of Oral Examination
2014-04-10
Advisor
Schmitt-Kopplin, P. (Prof. Dr.)
Referee
Schmitt-Kopplin, P. (Prof. Dr.); Rychlik, M. (Prof. Dr.)
Examiner
Topic
University
Technische Universität
University place
München
Faculty
Fakultät Wissenschaftszentrum Weihenstephan
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Environmental Sciences
PSP Element(s)
G-504800-001
Grants
Copyright
Erfassungsdatum
2015-05-26