PuSH - Publication Server of Helmholtz Zentrum München

Bozzetti, C.* ; Daellenbach, K.R.* ; Hueglin, C.* ; Fermo, P.* ; Sciare, J.* ; Kasper-Giebl, A.* ; Mazar, Y.* ; Abbaszade, G. ; El Kazzi, M.* ; González, R.* ; Shuster-Meiseles, T.* ; Flasch, M.* ; Wolf, R.* ; Krepelova, A.* ; Canonaco, F.* ; Schnelle-Kreis, J. ; Slowik, J.G.* ; Zimmermann, R. ; Rudich, Y.* ; Baltensperger, U.* ; El Haddad, I.* ; Prévôt, A.S.*

Size-resolved identification, characterization and quantification of primary biological organic aerosol at a European rural site.

Environ. Sci. Technol. 50, 3425-3434 (2016)
Postprint DOI PMC
Open Access Green
Primary biological organic aerosols (PBOA) represent a major component of the coarse organic matter (OMCOARSE). Although this fraction affects human health and climate, its quantification and chemical characterization currently remain elusive. We present the quantification of the entire PM10 PBOA mass and its main sources by analyzing size-segregated filter samples collected during summer and winter at the rural site of Payerne (Switzerland), representing a continental Europe background environment. The size-segregated water soluble OM was analyzed by a newly developed offline aerosol mass spectrometric technique (AMS). The spectra were then analyzed by 3-dimensional positive matrix factorization (3D-PMF), showing that PBOA represented the main OMCOARSE source during summer and its contribution to PM10 was as high as that of secondary organic aerosol. We found substantial cellulose contributions to OMCOARSE, which in combination with gas chromatography mass spectrometry molecular markers quantification, underlines the predominance of plant debris. Quantitative polymerase chain reaction (qPCR) analysis instead revealed that the sum of bacterial and fungal spores mass represented only a minor OMCOARSE fraction (<0.1%). X-ray photoelectron spectroscopic (XPS) analysis of C and N binding energies throughout the different size fractions revealed an organic N increase in the PMCOARSE compared to PM1 consistent with AMS observations.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Atmospheric Particulate Matter; Positive Matrix Factorization; Mass-spectrometer Data; Source Apportionment; High-resolution; Elemental Carbon; Quantitative Pcr; Fungal Spores; Part 1; Secondary
ISSN (print) / ISBN 0013-936X
e-ISSN 1520-5851
Quellenangaben Volume: 50, Issue: 7, Pages: 3425-3434 Article Number: , Supplement: ,
Publisher ACS
Publishing Place Washington, DC
Non-patent literature Publications
Reviewing status Peer reviewed