Removing the bottlenecks of cell culture metabolomics: Fast normalization procedure, correlation of metabolites to cell number, and impact of the cell harvesting method.
Metabolomics 12:151 (2016)
Introduction: Although cultured cells are nowadays regularly analyzed by metabolomics technologies, some issues in study setup and data processing are still not resolved to complete satisfaction: a suitable harvesting method for adherent cells, a fast and robust method for data normalization, and the proof that metabolite levels can be normalized to cell number. Objectives: We intended to develop a fast method for normalization of cell culture metabolomics samples, to analyze how metabolite levels correlate with cell numbers, and to elucidate the impact of the kind of harvesting on measured metabolite profiles. Methods: We cultured four different human cell lines and used them to develop a fluorescence-based method for DNA quantification. Further, we assessed the correlation between metabolite levels and cell numbers and focused on the impact of the harvesting method (scraping or trypsinization) on the metabolite profile. Results: We developed a fast, sensitive and robust fluorescence-based method for DNA quantification showing excellent linear correlation between fluorescence intensities and cell numbers for all cell lines. Furthermore, 82–97 % of the measured intracellular metabolites displayed linear correlation between metabolite concentrations and cell numbers. We observed differences in amino acids, biogenic amines, and lipid levels between trypsinized and scraped cells. Conclusion: We offer a fast, robust, and validated normalization method for cell culture metabolomics samples and demonstrate the eligibility of the normalization of metabolomics data to the cell number. We show a cell line and metabolite-specific impact of the harvesting method on metabolite concentrations.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Cell Culture Metabolomics ; Harvesting ; Metabolite–cell Number Correlation ; Normalization Method; Ms-based Metabolomics; Experimental-design; Rhodamine 6g; Cancer-cells; Extraction; Optimization; Assays; Lines; Tool
Keywords plus
Language
german
Publication Year
2016
Prepublished in Year
HGF-reported in Year
2016
ISSN (print) / ISBN
1573-3882
e-ISSN
1573-3890
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 12,
Issue: 10,
Pages: ,
Article Number: 151
Supplement: ,
Series
Publisher
Springer
Publishing Place
New York, NY
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
Institute(s)
Molekulare Endokrinologie und Metabolismus (MEM)
POF-Topic(s)
30201 - Metabolic Health
Research field(s)
Genetics and Epidemiology
PSP Element(s)
G-505600-001
G-505600-003
Grants
Copyright
Erfassungsdatum
2016-09-29